2005
DOI: 10.1109/ted.2004.841344
|View full text |Cite
|
Sign up to set email alerts
|

Impact Ionization MOS (I-MOS)—Part I: Device and Circuit Simulations

Abstract: Abstract-One of the fundamental problems in the continued scaling of transistors is the 60 mV/dec room temperature limit in the subthreshold slope. In part I this work, a novel transistor based on the field-effect control of impact-ionization (I-MOS) is explored through detailed device and circuit simulations. The I-MOS uses gated-modulation of the breakdown voltage of a p-i-n diode to switch from the OFF state to the ON state and vice-versa. Device simulations using MEDICI show that the I-MOS has a subthresho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
127
1
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 286 publications
(142 citation statements)
references
References 24 publications
0
127
1
1
Order By: Relevance
“…This inherent scaling limit has triggered the investigation of various alternative device technologies and principles. The alteration of the channel conduction mechanism has been facilitated in tunnel-FETs [2], [3] and impact-ionization-FETs [4]. Other approaches target gate-amplification in suspended-gate structures [5], [6] or with ferroelectric materials [7]- [9].…”
Section: Introductionmentioning
confidence: 99%
“…This inherent scaling limit has triggered the investigation of various alternative device technologies and principles. The alteration of the channel conduction mechanism has been facilitated in tunnel-FETs [2], [3] and impact-ionization-FETs [4]. Other approaches target gate-amplification in suspended-gate structures [5], [6] or with ferroelectric materials [7]- [9].…”
Section: Introductionmentioning
confidence: 99%
“…Рис. 1), лежит в основе функ-ционирования большого семейства устройств современной электроники, таких как лавинно-пролетные диоды (IMPATT), лавинные фотоприемники (APD) [1], а также транзисторы с полевым контролем ударной ионизации (I-MOS) [2], в которых экс-периментально достигнута крутизна подпороговой части ВАХ на уровне 5 mV/dec при T=400 K, что позволяет в разы увеличить скорость переключения. С точки зре-ния эффективности применения ударной ионизации в качестве физического принципа работы приборов наиболее удачным является использование в качестве областей ла-винного умножения рассматриваемых в данной работе прямозонных полупроводников с относительно небольшой шириной запрещенной зоны E g 1 eV, в которых энер-гетический порог лишь немного отличается от величины щели: E th ≈ E g (1 + 2µ) [3], где µ = m e /m hh ≪ 1.…”
Section: Introductionunclassified
“…To reduce the subthreshold swing below 60 mV/decade at room temperature, various carrier injection mechanisms other than thermal carrier injection have been proposed [2][3][4][5][6][7][8][9][10][11]. Interband tunneling can be used for injection of carriers and the device that utilizes such a mechanism is a tunneling field-effect transistor (TFET) [12][13][14][15][16].…”
Section: Introductionmentioning
confidence: 99%