Figure 1. Proposed method estimates camera wearer's 3D poses (solid) and forecasts future poses (translucent) in real-time.
AbstractWe propose the use of a proportional-derivative (PD) control based policy learned via reinforcement learning (RL) to estimate and forecast 3D human pose from egocentric videos. The method learns directly from unsegmented egocentric videos and motion capture data consisting of various complex human motions (e.g., crouching, hopping, bending, and motion transitions). We propose a video-conditioned recurrent control technique to forecast physically-valid and stable future motions of arbitrary length. We also introduce a value function based fail-safe mechanism which enables our method to run as a single pass algorithm over the video data. Experiments with both controlled and in-the-wild data show that our approach outperforms previous art in both quantitative metrics and visual quality of the motions, and is also robust enough to transfer directly to real-world scenarios. Additionally, our time analysis shows that the combined use of our pose estimation and forecasting can run at 30 FPS, making it suitable for real-time applications. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.