3D multi-object tracking (MOT) is essential to applications such as autonomous driving. Recent work focuses on developing accurate systems giving less attention to computational cost and system complexity. In contrast, this work proposes a simple real-time 3D MOT system with strong performance. Our system first obtains 3D detections from a LiDAR point cloud. Then, a straightforward combination of a 3D Kalman filter and the Hungarian algorithm is used for state estimation and data association. Additionally, 3D MOT datasets such as KITTI evaluate MOT methods in 2D space and standardized 3D MOT evaluation tools are missing for a fair comparison of 3D MOT methods. We propose a new 3D MOT evaluation tool along with three new metrics to comprehensively evaluate 3D MOT methods. We show that, our proposed method achieves strong 3D MOT performance on KITTI and runs at a rate of 207.4 FPS on the KITTI dataset, achieving the fastest speed among modern 3D MOT systems. Our code is publicly available at http://www.xinshuoweng.com/projects/AB3DMOT.
In this paper, we present supervision-by-registration, an unsupervised approach to improve the precision of facial landmark detectors on both images and video. Our key observation is that the detections of the same landmark in adjacent frames should be coherent with registration, i.e., optical flow. Interestingly, the coherency of optical flow is a source of supervision that does not require manual labeling, and can be leveraged during detector training. For example, we can enforce in the training loss function that a detected landmark at frame t−1 followed by optical flow tracking from frame t−1 to frame t should coincide with the location of the detection at frame t . Essentially, supervisionby-registration augments the training loss function with a registration loss, thus training the detector to have output that is not only close to the annotations in labeled images, but also consistent with registration on large amounts of unlabeled videos. End-to-end training with the registration loss is made possible by a differentiable Lucas-Kanade operation, which computes optical flow registration in the forward pass, and back-propagates gradients that encourage temporal coherency in the detector. The output of our method is a more precise image-based facial landmark detector, which can be applied to single images or video. With supervision-by-registration, we demonstrate (1) improvements in facial landmark detection on both images (300W, ALFW) and video (300VW, Youtube-Celebrities), and (2) significant reduction of jittering in video detections.
3D Multi-object tracking (MOT) is crucial to autonomous systems. Recent work uses a standard trackingby-detection pipeline, where feature extraction is first performed independently for each object in order to compute an affinity matrix. Then the affinity matrix is passed to the Hungarian algorithm for data association. A key process of this standard pipeline is to learn discriminative features for different objects in order to reduce confusion during data association. In this work, we propose two techniques to improve the discriminative feature learning for MOT: (1) instead of obtaining features for each object independently, we propose a novel feature interaction mechanism by introducing the Graph Neural Network. As a result, the feature of one object is informed of the features of other objects so that the object feature can lean towards the object with similar feature (i.e., object probably with a same ID) and deviate from objects with dissimilar features (i.e., object probably with different IDs), leading to a more discriminative feature for each object; (2) instead of obtaining the feature from either 2D or 3D space in prior work, we propose a novel joint feature extractor to learn appearance and motion features from 2D and 3D space simultaneously. As features from different modalities often have complementary information, the joint feature can be more discriminate than feature from each individual modality. To ensure that the joint feature extractor does not heavily rely on one modality, we also propose an ensemble training paradigm. Through extensive evaluation, our proposed method achieves stateof-the-art performance on KITTI and nuScenes 3D MOT benchmarks. Our code will be made available at https: //github.com/xinshuoweng/GNN3DMOT
Monocular 3D scene understanding tasks, such as object size estimation, heading angle estimation and 3D localization, is challenging. Successful modern day methods for 3D scene understanding require the use of a 3D sensor. On the other hand, single image based methods have significantly worse performance. In this work, we aim at bridging the performance gap between 3D sensing and 2D sensing for 3D object detection by enhancing LiDAR-based algorithms to work with single image input. Specifically, we perform monocular depth estimation and lift the input image to a point cloud representation, which we call pseudo-LiDAR point cloud. Then we can train a LiDAR-based 3D detection network with our pseudo-LiDAR end-to-end. Following the pipeline of two-stage 3D detection algorithms, we detect 2D object proposals in the input image and extract a point cloud frustum from the pseudo-LiDAR for each proposal. Then an oriented 3D bounding box is detected for each frustum. To handle the large amount of noise in the pseudo-LiDAR, we propose two innovations: (1) use a 2D-3D bounding box consistency constraint, adjusting the predicted 3D bounding box to have a high overlap with its corresponding 2D proposal after projecting onto the image; (2) use the instance mask instead of the bounding box as the representation of 2D proposals, in order to reduce the number of points not belonging to the object in the point cloud frustum. Through our evaluation on the KITTI benchmark, we achieve the top-ranked performance on both bird's eye view and 3D object detection among all monocular methods, effectively quadrupling the performance over previous state-of-the-art. Our code is available at https: //github.com/xinshuoweng/Mono3D_PLiDAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.