This study aimed to determine antiradical (DPPH• and •OH) and acetylcholinesterase (AChE) inhibitory activities along with chemical composition of autochtonous fungal species Trametes versicolor (Serbia). A total of 38 phenolic compounds with notable presence of phenolic acids were identified using HPLC/MS-MS. Its water extract exhibited the highest antiradical activity against •OH (3.21 μg/mL), among the rest due to the presence of gallic, p-coumaric and caffeic acids. At the concentration of 100 μg/mL, the same extract displayed a profound AChE inhibitory activity (60.53%) in liquid, compared to donepezil (89.05%), a drug in clinical practice used as positive control. The flavonoids baicalein and quercetin may be responsible compounds for the AChE inhibitory activity observed. These findings have demonstrated considerable potential of T. versicolor water extract as a natural source of antioxidant(s) and/or AChE inhibitor(s) to be eventually used as drug-like compounds or food supplements in the treatment of Alzheimer’s disease.
Bioactive properties of fungi considerably differ between the fruiting body (FB) and the submerged culture as regards mycelia (M) and the fermentation broth (F). Antioxidant properties of hot-water extracts obtained from three different fungal origins: FB, M and F of two autochthonous fungal species (Northern Serbia), Coprinus comatus and Coprinellus truncorum were investigated. Free radical scavenging capacity (RSC) was evaluated in vitro by the DPPH assay and reducing power ability (FRAP assay). Considering possible bioactive properties of different compounds present in fungal extracts, the content of total proteins (TP), phenols (TC) and flavonoids (TF) were investigated colorimetrically. The chemical characterisation of the examined extracts was evaluated using the HPLC-MS/MS method. C. comatus showed the strongest RSC activity; more precisely, fermentation broth extract (FCc) on DPPH radicals (IC50 = 5.06 lg mL -1 ) and fruiting body extract (FBCc) for the FRAP assay (42.86 mg ascorbic acid equivalents (AAE)/g). Submerged M extract of both species showed the highest TC (MCc 81.95 mg gallic acid eq (GAE)/g d.w.; MCt 81.64 mg GAE/g d.w.), while FB extracts contained the highest content of TP. Comparing LC-MS phenolic profiles between species-interspecifically and among different fungal origins-intraspecifically (fruiting bodies and submerged cultures), high variations were noticed. In submerged M or F extracts of C. comatus, vanillic, gallic, gentisic and cinnamic acids were detected, as opposed to FB. Considering that diverse phenolic profiles of detected antioxidant compounds were obtained by submerged cultivation, this type of cultivation is promising for the production of antioxidant substances.
This study aimed to estimate antiradical, antioxidant (AO) and cytotoxic activities of the fungus Trametes versicolor ethanol fruiting body extract. The extract was found to effectively scavenge both O and NO (29.62 and 52.48 μg/mL, respectively). It also showed a good AO activity in the polarographic HPMC assay (950%/mL). p-Hydroxybenzoic acid may be one of the responsible compounds for the afore-mentioned activities. The same extract also exhibited a concentration-dependent cytotoxicity against MCF-7 and HepG2 tumour cell lines reaching IC values of 123.51 and 134.29 μg/mL, respectively with no cytotoxic activity against normal MRC-5 cells. Gentisic, syringic and protocatechuic acids may be among the bioactive principles for the observed cytotoxicity. Taken all together, T. versicolor ethanol extract can be considered as a promising candidate for development of health promoting food supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.