In order to contribute to the exploitation and utilization of spent mushroom substrates (SMS) of Laetiporus sulphureus, hot-water-extractable polysaccharides (H-SMPS) and enzymatic-extractable polysaccharides (E-SMPS) were successfully isolated from SMS of L. sulphureus. Both H-SMPS and E-SMPS were found to have high reducing power and potential scavenging activities against hydroxyl, DPPH, and superoxide anion radicals. In vivo assays showed that the administration of H-SMPS and E-SMPS has potential hepatoprotective effects against alcohol-induced alcoholic liver disease (ALD), possibly brought about by improving liver function, increasing antioxidant status, and reducing lipid peroxidation. Furthermore, monosaccharide composition analysis showed that fucose may play a vital role in guaranteeing stronger hepatoprotection. These results may provide references for the exploitation of the SMS of L. sulphureus as a source of H-SMPS and E-SMPS, which in turn can be used as functional foods or natural drugs for the prevention of ALD and other liver diseases.
The present work was designed to evaluate the antioxidation and hepatoprotective effects of Auricularia cornea var. Li. polysaccharides (APS) and enzymatic-extractable APS (EAPS) on the acute alcohol-induced alcoholic liver diseases (ALD). The in vitro antioxidant activities demonstrated that both APS and EAPS had strong reducing power and potential effects on scavenging reactive oxygen species. The in vivo mice experiments showed that the pretreatment with APS or EAPS showed potential hepatoprotective effects on the ALD possibly by increasing the antioxidant activities, reducing the lipid peroxidation, improving the alcohol metabolism, inhibiting the expression levels of inflammatory mediators and preventing the alcohol-induced histopathological alterations. In addition, the fourier-transform infrared (FT-IR), 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and gas chromatography (GC) had been analyzed to obtained the primarily characteristics. The results indicated that abundant xylose and glucose contents probably had potential effects on possessing the bioactivities. The findings suggested that the A. cornea var. Li. might be considered as promising natural resource on exploring clinical drugs for the prevention and treatment with ALD and its complications.
The present work was designed to investigate the characterization, as well as the antioxidation and renoprotection in streptozocin (STZ)-induced diabetic mice, of exopolysaccharides (EPS) and the enzymatic-EPS (EEPS) and acidic-EPS (AEPS) hydrolysates, which were separated from the fermentation liquor of Hypsizigus marmoreus. Animal results demonstrated that EPS, EEPS and AEPS had potential antioxidant and renoprotective effects, especially EEPS. Additionally, they were the most effective, reflecting increases in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), total antioxidant capacity (T-AOC), and albumin (ALB) of 168.33%, 124.8%, 268.17% 179.49%, and 68.71%, respectively, and decreases in the contents of malondialdehyde (MDA), lipid peroxide (LPO) and levels of serum urea nitrogen (BUN) and creatinine (CRE) by 70.58%, 58.43%, 23.97% and 29.60%, respectively, at a dose of 800 mg/kg compared to those of model mice. Three polysaccharides ameliorated the histopathological alterations which were observed in the kidney of diabetic mice. Furthermore, the characterization of polysaccharides had been expressed. These findings indicated that the EEPS from H. marmoreus possesses more effective renoprotection and antioxidation effects and provided insight into its potential clinical values on preventing diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.