Microsporidia are widely recognized as important human pathogens with Enterocytozoon bieneusi as the most common species infecting humans and animals, including cattle. Although Brazil has the second largest cattle herd in the world and it is the largest exporter of beef there are no data on the presence or impact of E. bieneusi on this important population. To fill this knowledge gap, fecal specimens were collected from 452 cattle from pre-weaned calves to adult cattle in the state of Rio de Janeiro. Host factors including age, gender, dairy/beef, body composition, and fecal consistency were included in the study. Using molecular methods, E. bieneusi was found in 79/452 (17.5%) fecal specimens. This represents the first report of this parasite in Brazilian cattle. A significantly higher prevalence was found in calves less than 2 months of age (27.6%) and those 3-8 months of age (28.8%) versus heifers (14.1%) and adults (1.4%) (P<0.05). Dairy cattle (26.2%) had a higher prevalence than beef cattle (9.7%) (P<0.001). No correlation was found between infection and gender, body composition, and fecal consistency. Molecular characterization of the internal transcribed spacer (ITS) revealed 12 genotypes; five previously reported in cattle (BEB4, BEB8, D, EbpA and I), and seven novel genotypes (BEB11-BEB17). A phylogenetic analysis showed that 6 genotypes (D, EbpA, BEB12, BEB13, BEB15, and BEB16) identified in 18 animals clustered within the designated zoonotic Group 1 while the other 6 genotypes (I, BEB4, BEB8, BEB11, BEB14, BEB17) identified in 61 animals clustered within Group 2. The identification of genotypes in Brazilian cattle that have previously been reported in humans highlights the potential risk of zoonotic transmission and suggests that the role of cattle in transmission of human infections requires further study.
Feces were collected from 125 sheep between January and December 2007, on ten farms in the State of Rio de Janeiro, Brazil, and examined for the presence of Cryptosporidium. Ninety samples were collected from lambs 2 to 6 months of age, and 35 were from sheep over 12 months of age. All samples were subjected to molecular analysis by polymerase chain reaction (nested PCR) in two steps of the SSU rRNA. Two samples (1.6%) from the lambs were positive, and after sequencing were identified as Cryptosporidium ubiquitum. This species has been reported worldwide and it is considered a zoonotic pathogen since it has been found and in several animal species and humans. However, because of the low frequency of C. ubiquitum found, the risk for public health in this region may not be high.
Giardia and Cryptosporidium are potentially pathogenic protozoa which are ubiquitous in ambient surface water. The present study included 60 samples of surface water from three sampling sites from the Rímac River, Lima and Callao, Peru, to detect the occurrence of Giardia spp. and Cryptosporidium spp. and to perform molecular characterization of specimens found. Water samples were concentrated using the membrane filtration technique, and following elution, cysts and oocysts were visualized by direct immunofluorescence assay (IFA). For molecular characterization, tpi and bg gene fragments and 18S rRNA were amplified by nested PCR for Giardia and Cryptosporidium, respectively, followed by sequencing and phylogenetic analysis. Giardia cysts were found in 93.3% of the analyzed samples, whereas Cryptosporidium oocysts were detected in 15%. The positivity of the Giardia cysts was 86.6% (n = 26) in 2014, while Cryptosporidium oocysts were not detected. In 2015, both protozoa were found in raw water samples, with all 30 samples collected positive for Giardia cysts (100.0%) and 9 positive for Cryptosporidium oocysts (30.0%). Oocysts were detected in 20.0% of water samples from sites 1 (mean 5.25 oocysts/L) and 2 (mean 52.3 oocysts/L), while at site 3, oocysts were detected in 50.0% of raw water samples (mean 193.6 oocysts/L). The presence of Giardia duodenalis assemblage A was confirmed in several samples by the phylogenetic positioning of the bg and tpi genes, and the sub-assemblage AII was predominant (8/9). Sequencing for Cryptosporidium resulted in profiles compatible with Cryptosporidium hominis, Cryptosporidium meleagridis, and Cryptosporidium baileyi. This is the first time that the presence of G. duodenalis assemblage A/sub-assemblage AII and Cryptosporidium species has been reported in surface water samples in Peru. These Cryptosporidium species and the Giardia duodenalis assemblage are associated with human disease which highlights the potential risk to public health and the need to increase environmental monitoring measures to protect this water body.
Enterocytozoon bieneusi is an opportunistic intestinal pathogen that infects humans and a wide variety of animals worldwide. Our aim in this study was to investigate the occurrence of E. bieneusi in a domestic cat population in Campo Grande, Mato Grosso do Sul, Brazil. Sixty fecal samples from diarrheic cats were subjected to polymerase chain reaction (PCR) and the amplicons were sequenced for identification. E. bieneusi was detected in two samples (3.3%), both identified as genotype D. This genotype has already been reported in animals and humans and is considered a zoonotic genotype. Our findings represent the first report of E. bieneusi in domestic cats in Brazil, reinforcing the importance of identifying this agent as a source of infection in animals and humans.
BACKGROUND Enterocytozoon bieneusi are the most common microsporidia associated with different clinical manifestations such as diarrhoea, respiratory tract inflammation and acalculous cholecystitis, especially in immunocompromised patients. Infection usually occurs by ingestion of food and water contaminated with spores, but can also result from direct contact with spores through broken skin, eye lesions, and sexual transmission, depending on the microsporidian species. Although there are reports of E. bieneusi found in humans and animals in Brazil, there are no published studies of environmental samples examined by molecular methods.OBJECTIVES The purpose of this study was to verify the presence of E. bieneusi in raw sewage and treated effluent from a combined system by molecular methods.METHODS Raw sewage and treated effluent samples collected from a combined system were analysed for the presence of E. bieneusi using the internal transcriber spacer (ITS) region of E. bieneusi by nested polymerase chain reaction.FINDINGS The analysis revealed E. bieneusi presence and a novel genotype (EbRB) in one raw sewage sample and one treated effluent.MAIN CONCLUSIONS The presence of E. bieneusi in final effluent indicates that the combined system may not remove microsporidian spores. This study is the first report of E. bieneusi in environmental samples in Brazil.
The accidental ingestion of treated recreational water is an important transmission route of waterborne protozoa worldwide. The present study aimed to provide the first evaluation of swimming pools in Brazil, analysing the presence of pathogenic protozoa (Toxoplasma gondii, Cryptosporidium spp. and Giardia spp.) by parasitological and molecular methods. A total of 57 samples were collected from 21 public swimming pools, either directly from the pool or filter backwash water and concentrated using the membrane filtration technique. Giardia cysts and Cryptosporidium oocysts were visualized by direct immunofluorescence assay after purification by immunomagnetic separation. Toxoplasma gondii oocysts were detected by autofluorescence visualization using the supernatant discarded during the purification step as a sample. Positive samples were submitted to molecular analysis. The molecular markers were used: SSU-rRNA, tpi, gdh and bg, for Giardia DNA amplification, and 18S rRNA gene fragment amplification was used for the Cryptosporidium oocysts. The 529-bp repeat element (REP529) fragment and the 35-fold repetitive B1 gene were employed as a target for T. gondii. Amplified products were submitted to sequencing and phylogenetic analysis. Giardia cysts were detected in 19.0% and Cryptosporidium oocysts in 9.5% of swimming pools. In one swimming pool (4.7%), both protozoa were detected on at least one occasion. Structures similar to T. gondii oocysts were detected in 33.3% of the samples, ranging from one to 23 per slide. Giardia was confirmed by DNA amplification in three swimming pools; Giardia duodenalis Assemblage A was identified by the phylogenetic positioning of the β-giardin gene. Toxoplasma gondii DNA was detected in 14.2% of swimming pools. The present study represents the first report of the occurrence of T. gondii oocysts in swimming pools. Recreational activity in swimming pools contaminated by chlorine-resistant protozoa can represent a high risk of infection for bathers and swimmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.