Passive-dynamic walkers are simple mechanical devices, composed of solid parts connected by joints, that walk stably down a slope. They have no motors or controllers, yet can have remarkably humanlike motions. This suggests that these machines are useful models of human locomotion; however, they cannot walk on level ground. Here we present three robots based on passive-dynamics, with small active power sources substituted for gravity, which can walk on level ground. These robots use less control and less energy than other powered robots, yet walk more naturally, further suggesting the importance of passive-dynamics in human locomotion.
Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
The authors have built the first three-dimensional, kneed, two-legged, passive-dynamic walking machine. Since the work of Tad McGeer in the late 1980s, the concept of passive dynamics has added insight into animal locomotion and the design of anthropomorphic robots. Various analyses and machines that demonstrate efficient humanlike walking have been developed using this strategy. Human-like passive machines, however, have only operated in two dimensions (i.e., within the fore-aft or sagittal plane). Three-dimensional passive walking devices, mostly toys, have not had human-like motions but instead a stiff legged waddle. In the present three-dimensional device, the authors preserve features of McGeer's two-dimensional models, including mechanical simplicity, human-like knee flexure, and passive gravitational power from descending a shallow slope. They then add specially curved feet, a compliant heel, and mechanically constrained arms to achieve a harmonious and stable gait. The device stands 85 cm tall. It weighs 4.8 kg, walks at about 0.51 m/s down a 3.1-degree slope, and consumes 1.3 W. This robot further implicates passive dynamics in human walking and may help point the way toward simple and efficient robots with human-like motions.
COVID-19 may drive sustained research in robotics to address risks of infectious diseases.
Humans tend to swing their arms when they walk, a curious behaviour since the arms play no obvious role in bipedal gait. It might be costly to use muscles to swing the arms, and it is unclear whether potential benefits elsewhere in the body would justify such costs. To examine these costs and benefits, we developed a passive dynamic walking model with free-swinging arms. Even with no torques driving the arms or legs, the model produced walking gaits with arm swinging similar to humans. Passive gaits with arm phasing opposite to normal were also found, but these induced a much greater reaction moment from the ground, which could require muscular effort in humans. We therefore hypothesized that the reduction of this moment may explain the physiological benefit of arm swinging. Experimental measurements of humans ( n = 10) showed that normal arm swinging required minimal shoulder torque, while volitionally holding the arms still required 12 per cent more metabolic energy. Among measures of gait mechanics, vertical ground reaction moment was most affected by arm swinging and increased by 63 per cent without it. Walking with opposite-to-normal arm phasing required minimal shoulder effort but magnified the ground reaction moment, causing metabolic rate to increase by 26 per cent. Passive dynamics appear to make arm swinging easy, while indirect benefits from reduced vertical moments make it worthwhile overall.
SUMMARY The plantigrade human foot rolls over the ground during each walking step,roughly analogous to a wheel. The center of pressure progresses on the ground like a wheel of radius 0.3 L (leg length). We examined the effect of varying foot curvature on the mechanics and energetics of walking. We controlled curvature by attaching rigid arc shapes of various radii to the bottoms of rigid boots restricting ankle motion. We measured mechanical work performed on the center of mass (COM), and net metabolic rate, in human subjects (N=10) walking with seven arc radii from 0.02–0.40 m. Simple models of dynamic walking predict that redirection of COM velocity requires step-to-step transition work, decreasing quadratically with arc radius. Metabolic cost would be expected to change in proportion to mechanical work. We measured the average rate of negative work performed on the COM, and found that it followed the trend well (r2=0.95), with 2.37 times as much work for small radii as for large. Net metabolic rate(subtracting quiet standing) also decreased with increasing arc radius to a minimum at 0.3 L, with a slight increase thereafter. Maximum net metabolic rate was 6.25 W kg–1 (for small-radius arc feet),about 59% greater than the minimum rate of 3.93 W kg–1, which in turn was about 45% greater than the rate in normal walking. Metabolic rate was fit reasonably well (r2=0.86) by a quadratic curve,but exceeded that expected from COM work for extreme arc sizes. Other factors appear to increase metabolic cost for walking on very small and very large arc feet. These factors may include effort expended to stabilize the joints(especially the knee) or to maintain balance. Rolling feet with curvature 0.3 L appear energetically advantageous for plantigrade walking,partially due to decreased work for step-to-step transitions.
AbsIrnct-Exoskeletons that enhance human strength, endurance, and speed while being transparent to the wearer are feasible. In order to he transparent, the exoskeleton must dctermlne the user's intent, apply forces when and where appropriate, and present low impedance to the wearer.We present a one degree of freedom exoskeleton called the RoboKnee which acbleves a b i b level of transparency. User intent is determined through the knee jolnt angle and ground reaction forces. Torque is applied across the knee in order to allow the user's quadriceps muscles to relax. Low impedance is achieved through the use of Series Elastic Actuators.The RoboKnet allows the wearer to climb stairs and perform deep knee bends while canying a slgniJ3cant load in a backpack. The device provides most of the energy required to work against gravity while the user sbys in control, deciding when and where to walk, as well as providing balance and control Videos, photographs, and more Information ahout the RohoKnee can he found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.