Background: Recently, increasing exposure to radiations such as ultraviolet (UV) and gamma has led to growing incidence of different types of cancer and damage to aquatic and terrestrial ecosystems. Studies have shown that natural features such as latitude, elevation, weathering, local pollution, cloudy cover and earth surface play a remarkable role in distribution of UV and gamma radiations. In this regard, modeling and predicting UV and gamma rays distribution in each region is necessary. Objectives: The purpose of this study was modeling environmental UV and gamma radiations in Gonabad city, Iran. Methods: In this cross-sectional study, for modeling environmental UV and gamma radiations, several stations in Gonabad city were selected. Distance between two stations was 5 km, and a total of 1800 samples were collected from the considered region. UV and gamma radiations were detected by radiometer and survey-meter, respectively. In the end, data were modeled by Kriging model in GIS 10.3 and MATLAB software programs and their relationships were analyzed by performing t-test and ANOVA in SPSS version 16. Results:The predicted values for UV and gamma ranged from 0.03 to 1.829 Wm -2 and from 0.08 to 0.42 mSv, respectively. The highest UV and gamma doses were observed in the southwest region of Gonabad city. Minimum mean square error (MMSE) in GIS model related to UV and gamma were 0.24 and 0.02, respectively. Based on MATLAB, distribution of UV and gamma radiations showed high and low scattering, respectively, versus elevation and latitude. The most permanent weather condition for the measured UV and gamma radiations was sunny condition. Weather conditions had a significant (P < 0.001) and insignificant relationship (P > 0.001) with UV and gamma radiations, respectively. Conclusions: Integration of Kriging and MATLAB models led to obtaining more valuable estimates and maps about distribution of UV and gamma radiations from solar and terrestrial resources and weather conditions in a large region. These models showed that the population residing in mountainous areas received higher doses of UV and gamma radiations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.