Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms—Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine—in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.
We generated high-quality shallow landslide susceptibility maps for Bijar County, Kurdistan Province, Iran, using Random Forest (RAF), an ensemble computational intelligence method and three meta classifiers—Bagging (BA, BA-RAF), Random Subspace (RS, RS-RAF), and Rotation Forest (RF, RF-RAF). Modeling and validation were done on 111 shallow landslide locations using 20 conditioning factors tested by the Information Gain Ratio (IGR) technique. We assessed model performance with statistically based indexes, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). All four machine learning models that we tested yielded excellent goodness-of-fit and prediction accuracy, but the RF-RAF ensemble model (AUC = 0.936) outperformed the BA-RAF, RS-RAF (AUC = 0.907), and RAF (AUC = 0.812) models. The results also show that the Random Forest model significantly improved the predictive capability of the RAF-based classifier and, therefore, can be considered as a useful and an effective tool in regional shallow landslide susceptibility mapping.
Zrebar Lake is one of the largest freshwater lakes in Iran and it plays an important role in the ecosystem of the environment, while its desiccation has a negative impact on the surrounded ecosystem. Despite this, this lake provides an interesting recreation setting in terms of ecotourism. The prediction and forecasting of the water level of the lake through simple but practical methods can provide a reliable tool for future lake water resource management. In the present study, we predict the daily water level of Zrebar Lake in Iran through well-known decision tree-based algorithms, including the M5 pruned (M5P), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). We used five different water input combinations to find the most effective one. For our modeling, we chose 70% of the dataset for training (from 2011 to 2015) and 30% for model evaluation (from 2015 to 2017). We evaluated the models’ performances using different quantitative (root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), percent bias (PBIAS) and ratio of the root mean square error to the standard deviation of measured data (RSR)) and visual frameworks (Taylor diagram and box plot). Our results showed that water level with a one-day lag time had the highest effect on the result and, by increasing the lag time, its effect on the result was decreased. This result indicated that all the developed models had a good prediction capability, but the M5P model outperformed the others, followed by RF and RT equally and then REPT. Our results showed that these algorithms can predict water level accurately only with a one-day lag time in water level as an input and they are cost-effective tools for future predictions.
While it remains the primary source of safe drinking and irrigation water in northwest Iran's Maku Plain, the region's groundwater is prone to fluoride contamination. Accordingly, modeling techniques to accurately predict groundwater fluoride concentration are required. The current paper advances several novel data mining algorithms including Lazy learners [instance‐based K‐nearest neighbors (IBK); locally weighted learning (LWL); and KStar], a tree‐based algorithm (M5P), and a meta classifier algorithm [regression by discretization (RBD)] to predict groundwater fluoride concentration. Drawing on several groundwater quality variables (e.g., normalCa2+,normalMg2+,normalNa+,normalK+,normalHCO3−,normalCO32−,normalSO42−,andnormalCl− concentrations), measured in each of 143 samples collected between 2004 and 2008, several models predicting groundwater fluoride concentrations were developed. The full dataset was divided into two subsets: 70% for model training (calibration) and 30% for model evaluation (validation). Models were validated using several statistical evaluation criteria and three visual evaluation approaches (i.e., scatter plots, Taylor and Violin diagrams). Although Na+ and Ca2+ showed the greatest positive and negative correlations with fluoride (r = 0.59 and −0.39, respectively), they were insufficient to reliably predict fluoride levels; therefore, other water quality variables, including those weakly correlated with fluoride, should be considered as inputs for fluoride prediction. The IBK model outperformed other models in fluoride contamination prediction, followed by KStar, RBD, M5P, and LWL. The RBD and M5P models were the least accurate in terms of predicting peaks in fluoride concentration values. Results of the current study can be used to support practical and sustainable management of water and groundwater resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.