2018
DOI: 10.1007/s11269-018-2102-6
|View full text |Cite
|
Sign up to set email alerts
|

Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
77
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
3

Relationship

2
5

Authors

Journals

citations
Cited by 161 publications
(81 citation statements)
references
References 61 publications
0
77
0
Order By: Relevance
“…Validation performance is a critical step in a modeling procedure, for which several statistical indices has been suggested and used [13,14,[49][50][51][52]. In this study, we used Area Under Receiver Operating Characteristic (ROC) curve (AUC) [39,[53][54][55][56], Root Mean Squared Error (RMSE) [57][58][59][60][61][62][63][64], Kappa, Accuracy (ACC), Specificity (SPF), Sensitivity (SST), Negative predictive value (NPV), and Positive predictive value (PPV) [65][66][67][68][69].…”
Section: Validation Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Validation performance is a critical step in a modeling procedure, for which several statistical indices has been suggested and used [13,14,[49][50][51][52]. In this study, we used Area Under Receiver Operating Characteristic (ROC) curve (AUC) [39,[53][54][55][56], Root Mean Squared Error (RMSE) [57][58][59][60][61][62][63][64], Kappa, Accuracy (ACC), Specificity (SPF), Sensitivity (SST), Negative predictive value (NPV), and Positive predictive value (PPV) [65][66][67][68][69].…”
Section: Validation Methodsmentioning
confidence: 99%
“…These results are in line with previous works that demonstrated the advantages of ensemble modeling approaches over single simple modeling. For example, J48 decision tree integrated with Bagging [97] and Naïve Bayes tree integrated with Random Subspace [98] for landslide prediction, RF integrated with different ensemble techniques for gully erosion [31], and alternating decision tree integrated with AdaBoost [29], fisher's linear discriminant function integrated with Bagging [99], RF integrated with Random Subspace [14], and decision stump with different ensemble techniques for groundwater potential mapping [100]. (3), and RMSE (0.504) ( Table 2).…”
Section: Model Performancementioning
confidence: 99%
See 1 more Smart Citation
“…Their finding show that although MCDM models could predict flood-prone areas, the data mining algorithms had a higher prediction power than MCDMs since MCDMs rely on expert opinion. Arabameri et al [28] applied an EBF model to the generation of flood susceptibility maps and compared the results with FR, TOPSIS, and VIKOR models, concluding that the EBF model performed best.Recently, hybrid machine learning methods have been applied to studies relating to the spatial prediction of natural hazards such as landslides [12,20,, wildfires [50], sinkholes [51], droughts [52], gully erosion [53,54], and groundwater [55,56] and land/ground subsidence [12]. An advantage of the ensemble algorithms is that they have a higher goodness-of-fit and prediction accuracy than individual or single-based methods/algorithms.…”
mentioning
confidence: 99%
“…Recently, hybrid machine learning methods have been applied to studies relating to the spatial prediction of natural hazards such as landslides [12,20,, wildfires [50], sinkholes [51], droughts [52], gully erosion [53,54], and groundwater [55,56] and land/ground subsidence [12]. An advantage of the ensemble algorithms is that they have a higher goodness-of-fit and prediction accuracy than individual or single-based methods/algorithms.…”
mentioning
confidence: 99%