Rhythmicity plays an important role in a number of biological systems. The habenular complex is reported to contain an intrinsic molecular clock and to show rhythmic expression of circadian clock genes and proteins including per2/PER2. In this study, we observed that there is a temporal rhythmicity in the presynaptic efficacy of the lateral habenula (LHb) neurons. We collected a substantial number of recordings at different time points of the day during the light phase. The frequency and amplitude of spontaneous excitatory transmission were increased in the afternoon compared to recordings performed in the morning. In addition, the paired-pulse ratio and the success rate of minimal stimulation were also significantly different depending on the time of the recording. We did not see any significant differences in recordings obtained from pyramidal neurons of the hippocampus in the same brain slices. Taken together, our data indicates that the LHb exhibits intrinsic temporal oscillation in basal neurotransmission and in presynaptic release probability. Given the rapidly growing interest on the function of the LHb, more careful examination of synaptic transmission in the LHb is thus required.
Small humanin-like peptide 2 (SHLP2) is a mitochondrial-derived peptide implicated in several biological processes such as aging and oxidative stress. However, its functional role in the regulation of energy homeostasis remains unclear, and its corresponding receptor is not identified. Hereby, we demonstrate that both systemic and intracerebroventricular (ICV) administrations of SHLP2 protected the male mice from high-fat diet (HFD)-induced obesity and improved insulin sensitivity. In addition, the activation of pro-opiomelanocortin (POMC) neurons by SHLP2 in the arcuate nucleus of the hypothalamus (ARC) is involved in the suppression of food intake and the promotion of thermogenesis. Through high-throughput structural complementation screening, we discovered that SHLP2 binds to and activates chemokine receptor 7 (CXCR7). Taken together, our study not only reveals the therapeutic potential of SHLP2 in metabolic disorders but also provides important mechanistic insights into how it exerts its effects on energy homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.