An adaptive medium access control (MAC) retransmission limit selection scheme is proposed to improve the performance of IEEE 802.11p standard MAC protocol for video streaming applications over vehicular ad-hoc networks (VANETs). A multi-objective optimization framework, which jointly minimizes the probability of playback freezes and start-up delay of the streamed video at the destination vehicle by tuning the MAC retransmission limit with respect to channel statistics as well as packet transmission rate, is applied at road side unit (RSU). Periodic channel state estimation is performed at the RSU using the information derived from the received signal strength (RSS) and Doppler shift effect. Estimates of access probability between the RSU and the destination vehicle is incorporated in the design of the adaptive MAC scheme. The adaptation parameters are embedded in the user datagram protocol (UDP) packet header. Two-hop transmission is applied in zones in which the destination vehicle is not within the transmission range of any RSU. For multi-hop scenario, we discuss two-hop joint MAC retransmission adaptation and path selection. Compared with the non-adaptive IEEE 802.11p standard MAC, numerical results show that the proposed adaptive MAC protocol exhibits significantly fewer playback freezes while introduces only a slight increase in start-up delay.
Abstract-An adaptive medium access control (MAC) retransmission limit selection scheme is proposed to improve the performance of IEEE 802.11p standard MAC protocol for video streaming applications over vehicular ad-hoc networks (VANETs). A multi-objective optimization framework, which jointly minimizes the probability of playback freezes and start-up delay of the streamed video at the destination vehicle by tuning the MAC retransmission limit with respect to channel statistics as well as packet transmission rate, is applied at road side unit (RSU). Periodic channel state estimation is performed at the RSU using the information derived from the received signal strength (RSS) and Doppler shift effect. Estimates of access probability between the RSU and the destination vehicle is incorporated in the design of the adaptive MAC scheme. The adaptation parameters are embedded in the user datagram protocol (UDP) packet header. Two-hop transmission is applied in zones in which the destination vehicle is not within the transmission range of any RSU. For multi-hop scenario, we discuss two-hop joint MAC retransmission adaptation and path selection. Compared with the non-adaptive IEEE 802.11p standard MAC, numerical results show that the proposed adaptive MAC protocol exhibits significantly fewer playback freezes while introduces only a slight increase in start-up delay.Index Terms-VANETs, video streaming, multi-objective optimization, MAC retransmission limit adaptation.
Abstract-In this paper, we propose an integrated networklayer scheme for seamless delivery of video packets in VANET. First, we introduce a new quality-driven routing scheme for delivering video streams from a fixed network to a destination vehicle via multi-hop communications. The routing scheme aims to optimize the visual quality of the transmitted video frames by minimizing the distortion, the start-up delay, and the frequency of the streaming freezes. We then propose an efficient network mobility management scheme, which introduces a novel adaptation of Proxy Mobile IPv6 (PMIPv6) for multi-hop VANET scenarios, and incorporates a handover prediction mechanism. Numerical results are given to demonstrate that our integrated scheme can achieve good performance for the video quality metrics, the handover delay, and the signalling cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.