Summary
The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment while their counterparts in deeper layers provide a more flexible representation that is shaped by learning about salient features in the environment.
Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles reorganize to support learning but must also maintain stable representations to facilitate memory recall. Despite extensive research, the learning-related role of place cell dynamics in health and disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of wild-type and Df(16)A+/− mice, an animal model of 22q11.2 deletion syndrome, one of the most common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of place fields toward the goal location. Df(16)A+/− mice showed a significant learning deficit accompanied by reduced spatial map stability and the absence of goal-directed place cell reorganization. These results expand our understanding of the hippocampal ensemble dynamics supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated cognitive dysfunction.
SummaryThe entorhinal cortex (EC) is central to the brain’s navigation system. Its subregions are conventionally thought to compute dichotomous representations for spatial processing: medial entorhinal cortex (MEC) provides a global spatial map, while lateral entorhinal cortex (LEC) encodes specific sensory details of experience. While local recordings of EC circuits have amassed a vast catalogue of specialized cell types that could support navigation computations in the brain, we have little direct evidence for how these signals are actually transmitted outside of the EC to its primary downstream reader, the hippocampus, which itself is critical for the formation of spatial and episodic memories. Here we exploitin vivosub-cellular imaging to directly record from EC axon terminals as they locally innervate hippocampal area CA1, while mice performed navigational and spatial learning tasks in virtual reality. We find both distinct and overlapping representations of task, location, and context in both MEC and LEC axons. While MEC transmitted a highly location- and context-specific code, LEC inputs were strongly biased by ongoing navigational goals and reward. Surprisingly, the position of the animal could be accurately decoded from either entorhinal subregion. Our results challenge prevailing dogma on the routing of spatial and non-spatial information from the cortex to the hippocampus, indicating that cortical interactions upstream of the hippocampus are critical for combining these processing streams to support navigation and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.