Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. A remaining challenge is to combine high mechanical robustness with good electrical conduction, especially when patterned at small feature sizes. We develop a molecular engineering strategy based on a topological supramolecular network, which allows for the decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We obtained simultaneously high conductivity and crack-onset strain in a physiological environment, with direct photopatternability down to the cellular scale. We further collected stable electromyography signals on soft and malleable octopus and performed localized neuromodulation down to single-nucleus precision for controlling organ-specific activities through the delicate brainstem.
Complex spatial working memory (WM) tasks have been shown to require both hippocampal sharp wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial WM by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent WM task on an 8-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
Continuous attractor network models of grid formation posit that recurrent connectivity between grid cells controls their patterns of co-activation. Grid cells from a common module exhibit stable offsets in their periodic spatial tuning curves across environments, which may reflect recurrent connectivity or correlated sensory inputs. Here we explore whether cell-cell relationships predicted by attractor models persist during sleep states in which spatially informative sensory inputs are absent. We recorded ensembles of grid cells in superficial layers of medial entorhinal cortex during active exploratory behaviors and overnight sleep. Per pair and collectively, we found preserved patterns of spiketime correlations across waking, REM, and non-REM sleep, which reflected the spatial tuning offsets between these cells during active exploration. The preservation of cell-cell relationships across states was not explained by theta oscillations or CA1 activity.These results suggest that recurrent connectivity within the grid cell network drives grid cell activity across behavioral states.Grid cells of the medial entorhinal cortex (MEC) 1 together with place 2 , head direction 3,4 , border 5 , speed cells 6 , and cells that simultaneously code multiple navigational variables 7 , convey information about the evolving location and orientation of mammals as they move through 2D open fields, run on 1D linear tracks, or fly through 3D space 8 . Grid cells are defined by regular, periodic responses to an animal's 2D spatial location.Each grid cell's multiple spatial receptive fields ("grid fields") form a characteristic geometric pattern well-described by a lattice of equilateral triangles.. CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the ''chandelier'' or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.