Fear memories guide adaptive behavior in contexts associated with aversive events. The hippocampus forms a neural representation of the context that predicts aversive events. Representations of context incorporate multisensory features of the environment, but must somehow exclude sensory features of the aversive event itself. We investigated this selectivity using cell type–specific imaging and inactivation in hippocampal area CA1 of behaving mice. Aversive stimuli activated CA1 dendrite-targeting interneurons via cholinergic input, leading to inhibition of pyramidal cell distal dendrites receiving aversive sensory excitation from the entorhinal cortex. Inactivating dendrite-targeting interneurons during aversive stimuli increased CA1 pyramidal cell population responses and prevented fear learning. We propose subcortical activation of dendritic inhibition as a mechanism for exclusion of aversive stimuli from hippocampal contextual representations during fear learning.
SUMMARY Adult-born granule cells (abGCs) have been implicated in cognition and mood; however, it remains unknown how these cells behave in vivo. Here, we have used two-photon calcium imaging to monitor the activity of young abGCs in awake behaving mice. We find that young adult-born neurons fire at a higher rate in vivo but paradoxically exhibit less spatial tuning than their mature counterparts. When presented with different contexts, mature granule cells underwent robust remapping of their spatial representations, and the few spatially tuned adult-born cells remapped to a similar degree. We next used optogenetic silencing to confirm the direct involvement of abGCs in context encoding and discrimination, consistent with their proposed role in pattern separation. These results provide the first in vivo characterization of abGCs and reveal their participation in the encoding of novel information.
The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, the GABAergic projections act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 neurons to fire synaptically-evoked dendritic spikes and generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based longterm memory associations by assessing the salience of mnemonic information to the immediate sensory input.
Summary The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment while their counterparts in deeper layers provide a more flexible representation that is shaped by learning about salient features in the environment.
Emerging evidence suggests that myocyte enhancer factor 2 (MEF2) transcription factors act as effectors of neurogenesis in the brain, with MEF2C the predominant isoform in developing cerebrocortex. Here, we show that conditional knockout of Mef2c in nestin-expressing neural stem/progenitor cells (NSCs) impaired neuronal differentiation in vivo, resulting in aberrant compaction and smaller somal size. NSC proliferation and survival were not affected. Conditional null mice surviving to adulthood manifested more immature electrophysiological network properties and severe behavioral deficits reminiscent of Rett syndrome, an autism-related disorder. Our data support a crucial role for MEF2C in programming early neuronal differentiation and proper distribution within the layers of the neocortex.neurogenesis ͉ synaptogenesis ͉ autism ͉ Rett syndrome K nockdown of the transcription factor MEF2C in mature cerebrocortical neurons results in increased synaptic number and activity (1). To facilitate analysis of MEF2C function in early neuronal development, we engineered a conditional knockout in NSCs by crossing floxed Mef2c mice with Nestin-Cre mice. In contrast to the findings in more mature neurons, we found a striking alteration in the distribution of new neurons in the neocortex and the opposite effect on synaptic activity, i.e., decreased neurotransmission persisting into adulthood.MEF2C belongs to the myocyte enhancer factor 2 (MEF2) subfamily of the MADS (MCM1-agamous-deficiens-serum response factor) gene family (2, 3). We cloned MEF2C from developing mouse brain, and Eric Olson and colleagues then discovered it in the heart (2, 4, 5). In cerebrocortex, MEF2 transcriptional activity is restricted to differentiated cortical neurons in a specific laminar pattern, and its distribution increases along the rostrocaudal axis (2, 4, 6). These features led to speculation on the potential role of MEF2C in the architechtonics of the cerebral cortex (2). Previous studies demonstrated an important role for MEF2C in heart development (7). In the CNS, MEF2C is involved in neuronal apoptosis (8) and synapse formation (1, 9) in vitro or in brain slices. Most recently, our laboratory discovered that a constitutively active form of MEF2C induces embryonic stem cells to commit to a neuronal fate in a virtually exclusive fashion (10). However, studies on the effect of endogenous MEF2C on CNS neurons in vivo were impeded by the embryonic lethality of conventional Mef2c-null mice because of cardiovascular defects at embryonic day (E) 9.5, before brain development (7). Here, we report that conditionally knocking out the Mef2c gene in neural progenitors causes abnormal aggregation and compaction of neurons migrating into the lower layers of the neocortex during development. Knockout mice surviving to adulthood manifest smaller, apparently less mature neurons and smaller whole brain size, with resultant aberrant electrophysiology and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.