H+-ATPases are ubiquitous in nature; V-ATPases pump protons against an electrochemical gradient, whereas F-ATPases reverse the process, synthesizing ATP. We demonstrate here that mutations in ATP6B1, encoding the B-subunit of the apical proton pump mediating distal nephron acid secretion, cause distal renal tubular acidosis, a condition characterized by impaired renal acid secretion resulting in metabolic acidosis. Patients with ATP6B1 mutations also have sensorineural hearing loss; consistent with this finding, we demonstrate expression of ATP6B1 in cochlea and endolymphatic sac. Our data, together with the known requirement for active proton secretion to maintain proper endolymph pH, implicate ATP6B1 in endolymph pH homeostasis and in normal auditory function. ATP6B1 is the first member of the H+-ATPase gene family in which mutations are shown to cause human disease.
We report five patients with nutritional osteomalacia who presented with the symptoms and signs of plantar fasciitis. All the patients were Asian vegetarian women. All improved with treatment of the osteomalacia, albeit slowly in two cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.