Vagus nerve stimulation (VNS) is a widely used neuromodulation technique that is currently used or being investigated as therapy for a wide array of human diseases such as epilepsy, depression, Alzheimer's disease, tinnitus, inflammatory diseases, pain, heart failure and many others. Here, we report a pronounced decrease in brain and core temperature during VNS in freely moving rats. Two hours of rapid cycle VNS (7s on/18s off) decreased brain temperature by around [Formula: see text]C, while standard cycle VNS (30[Formula: see text]s on/300[Formula: see text]s off) was associated with a decrease of around [Formula: see text]C. Rectal temperature similarly decreased by more than [Formula: see text]C during rapid cycle VNS. The hypothermic effect triggered by VNS was further associated with a vasodilation response in the tail, which reflects an active heat release mechanism. Despite previous evidence indicating an important role of the locus coeruleus-noradrenergic system in therapeutic effects of VNS, lesioning this system with the noradrenergic neurotoxin DSP-4 did not attenuate the hypothermic effect. Since body and brain temperature affect most physiological processes, this finding is of substantial importance for interpretation of several previously published VNS studies and for the future direction of research in the field.
Purpose The main purpose of this study was to understand how the positron emission tomography (PET) measure of the synaptic vesicle 2A (SV2A) protein varies in vivo during the development of temporal lobe epilepsy (TLE) in the kainic acid rat model. Procedures Twenty Sprague Dawley male rats were administered with multiple systemic doses of saline (control group, n = 5) or kainic acid (5 mg/kg/injection, epileptic group, n = 15). Both groups were scanned at the four phases of TLE (early, latent, transition, and chronic phase) with the [18F]UCB-H PET radiotracer and T2-structural magnetic resonance imaging. At the end of the scans (3 months post-status epilepticus), rats were monitored for 7 days with electroencephalography for the detection of spontaneous electrographic seizures. Finally, the immunofluorescence staining for SV2A expression was performed. Results Control rats presented a significant increase in [18F]UCB-H binding at the last two scans, compared with the first ones (p < 0.001). This increase existed but was lower in epileptic animals, producing significant group differences in all the phases of the disease (p < 0.028). Furthermore, the quantification of the SV2A expression in vivo with the [18F]UCB-H radiotracer or ex vivo with immunofluorescence led to equivalent results, with a positive correlation between both. Conclusions Even if further studies in humans are required, the ability to detect a progressive decrease in SV2A expression during the development of temporal lobe epilepsy supports the use of [18F]UCB-H as a useful tool to differentiate, in vivo, between healthy and epileptic animals along with the development of the epileptic disease.
Seizures are common in patients with high-grade gliomas (30–60%) and approximately 15–30% of glioblastoma (GB) patients develop drug-resistant epilepsy. Reliable animal models are needed to develop adequate treatments for glioma-related epilepsy. Therefore, fifteen rats were inoculated with F98 GB cells (GB group) and four rats with vehicle only (control group) in the right entorhinal cortex. MRI was performed to visualize tumor presence. A subset of seven GB and two control rats were implanted with recording electrodes to determine the occurrence of epileptic seizures with video-EEG recording over multiple days. In a subset of rats, tumor size and expression of tumor markers were investigated with histology or mRNA in situ hybridization. Tumors were visible on MRI six days post-inoculation. Time-dependent changes in tumor morphology and size were visible on MRI. Epileptic seizures were detected in all GB rats monitored with video-EEG. Twenty-one days after inoculation, rats were euthanized based on signs of discomfort and pain. This study describes, for the first time, reproducible tumor growth and spontaneous seizures upon inoculation of F98 cells in the rat entorhinal cortex. The development of this new model of GB-related epilepsy may be valuable to design new therapies against tumor growth and associated epileptic seizures.
Aim: Selective chemogenetic modulation of locus coeruleus (LC) neurons would allow dedicated investigation of the role of the LC-NA pathway in brain excitability and disorders such as epilepsy. This study investigated the feasibility of an experimental set-up where chemogenetic modification of the brainstem locus coeruleus NA neurons is aimed at and followed by LC unit activity recording in response to clozapine.Methods: The LC of male Sprague-Dawley rats was injected with 10 nl of adenoassociated viral vector AAV2/7-PRSx8-hM3Dq-mCherry (n = 19, DREADD group) or AAV2/7-PRSx8-eGFP (n = 13, Controls). Three weeks later, LC unit recordings were performed in anesthetized rats. We investigated whether clozapine, a drug known to bind to modified neurons expressing hM3Dq receptors, was able to increase the LC firing rate. Baseline unit activity was recorded followed by subsequent administration of 0.01 and 0.1 mg/kg of clozapine in all rats. hM3Dq-mcherry expression levels were investigated using immunofluorescence staining of brainstem slices at the end of the experiment.Results: Unit recordings could be performed in 12 rats and in a total of 12 neurons (DREADDs: n = 7, controls: n = 5). Clozapine 0.01 mg/kg did not affect the mean firing rate of recorded LC-neurons; 0.1 mg/kg induced an increased firing rate, irrespective whether neurons were recorded from DREADD or control rats (p = 0.006). Co-labeling of LC neurons and mCherry-tag showed that 20.6 ± 2.3% LC neurons expressed the hM3Dq receptor. Aspecific expression of hM3Dq-mCherry was also observed in non-LC neurons (26.0 ± 4.1%).Conclusion: LC unit recording is feasible in an experimental set-up following manipulations for DREADD induction. A relatively low transduction efficiency of the used AAV was found. In view of this finding, the effect of injected clozapine on LC-NA could Frontiers in Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 162 Stevens et al. Chemogenetics to Investigate LC-NA Pathwaynot be investigated as a reliable outcome parameter for activation of chemogenetically modified LC neurons. The use of AAV2/7, a vector previously applied successfully to target dopaminergic neurons in the substantia nigra, leads to insufficient chemogenetic modification of the LC compared to transduction with AAV2/9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.