Background and purpose: In patients treated with vagus nerve stimulation (VNS) for drug resistant epilepsy (DRE), up to a third of patients will eventually not respond to the therapy. As VNS therapy requires surgery for device implantation, prediction of response prior to surgery is desirable. It is hypothesized that neurophysiological investigations related to the mechanisms of action of VNS may help to differentiate VNS responders from non-responders prior to the initiation of therapy. Methods: In a prospective series of DRE patients, polysomnography, heart rate variability (HRV) and cognitive event related potentials were recorded. Polysomnography and HRV were repeated after 1 year of treatment with VNS. Polysomnography, HRV and cognitive event related potentials were compared between VNS responders (≥50% reduction in seizure frequency) and non-responders. Results: Fifteen out of 30 patients became VNS responders after 1 year of VNS treatment. Prior to treatment with VNS, the amount of deep sleep (NREM 3), the HRV high frequency (HF) power and the P3b amplitude were significantly different in responders compared to non-responders (P = 0.007; P = 0.001; P = 0.03). Conclusion: Three neurophysiological parameters, NREM 3, HRV HF and P3b amplitude, were found to be significantly different in DRE patients who became responders to VNS treatment prior to initiation of their treatment with VNS. These non-invasive recordings may be used as characteristics for response in future studies and help avoid unsuccessful implantations. Mechanistically these findings may be related to changes in brain regions involved in the so-called vagal afferent network.
Vagus nerve stimulation (VNS) therapy is associated with laryngeal muscle activation and induces voice modifications, well-known side effects of the therapy resulting from co-activation of the recurrent laryngeal nerve. In this study, we describe the non-invasive transcutaneous recording of laryngeal motor evoked potentials (LMEPs), which could serve as a biomarker of effective nerve activation and individual titration in patients with drug-resistant epilepsy. We recruited drug-resistant epileptic patients treated for at least 6 months with a VNS. Trains of 600–1200 VNS pulses were delivered with increasing current outputs. We placed six skin electrodes on the ventral surface of the neck, in order to record LMEPs whenever the laryngeal muscular threshold was reached. We studied the internal consistency and the variability of LMEP recordings, and compared different methods for amplitude calculation. Recruitment curves were built based on the stimulus–response relationship. We also determined the electrical axis of the LMEPs dipole in order to define the optimal electrode placement for LMEPs recording in a clinical setting. LMEPs were successfully recorded in 11/11 patients. The LMEPs threshold ranged from 0.25 to 1 mA (median 0.50 mA), and onset latency was between 5.37 and 8.77 ms. The signal-to-noise ratio was outstanding in 10/11 patients. In these cases, excellent reliability (Intraclass correlation coefficient, ICC > 0.90 across three different amplitude measurements) was achieved with 10 sample averages. Moreover, our recordings showed very good internal consistency (Cronbach’s alpha > 0.95 for 10 epochs). Area-under-the-curve and peak-to-peak measurement proved to be complementary methods for amplitude calculation. Finally, we determined that an optimal derivation requires only two recording electrodes, aligned on a horizontal axis around the laryngeal prominence. In conclusion, we describe here an optimal methodology for the recording of VNS-induced motor evoked responses from the larynx. Although further clinical validation is still necessary, LMEPs might be useful as a non-invasive marker of effective nerve activation, and as an aid for the clinician to perform a more rational titration of VNS parameters.
Cystic fibrosis (CF) is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR) protein function. We assayed, in F508del-CFTR homozygous (CF) and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component) and to stimulation by isoprenaline (CFTR-dependent component). Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg) dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.