In this study, we demonstrated that in vitro Candida albicans biofilms grown in the presence of diclofenac showed increased susceptibility to caspofungin. These findings were further confirmed using a catheter-associated biofilm model in rats. C. albicans-inoculated catheters retrieved from rats that were treated with both diclofenac and caspofungin contained significantly fewer biofilm cells and showed no visible biofilms inside the catheter lumens, as documented by scanning electron microscopy, as compared to catheters retrieved from rats receiving only caspofungin or diclofenac. This report indicates that diclofenac could be useful in combination therapy with caspofungin to treat C. albicans biofilm-associated infections.
Electrophoretic deposition (EPD) is a colloidal production process developed in the early 20th century. Industrial scale EPD for the production of electronic components and phosphorescent screens and in the form of cataphoretic painting has known some success. Despite its limited practical applications, the inherent versatility of EPD has never ceased to fuel research into this technique. One of the major drives of this research was to render the method more environmentally friendly by enabling deposition from aqueous suspensions. One particular route, suggested to circumvent the problems caused by the use of water in EPD, is the use of alternating or pulsed fields. Recently, the use of alternating fields in EPD has been investigated for the deposition of biological matter in the form of cells and molecules. With this new avenue of research opening up and coinciding with a rise in biotechnological processes, one can expect a renewed interest in traditional EPD and fundamental research on the use of pulsed and alternating fields in this technique. Hence, this review attempts to summarize a century's worth of both fundamental and applied research for scientists venturing into the field of EPD.
In the biomedical field, modification of titanium surfaces to improve the osteoinductive and antibacterial behavior is widely investigated. This functionalization can be further ameliorated by providing a porous coating with high loading capacity for bioactive materials and drug delivery carriers at the implant surface. In this work, a new powder metallurgical processing route used to deposit such porous pure titanium coatings on Ti based substrates is presented. The coatings were prepared by electrophoretic deposition (EPD) of TiH2 powder suspensions followed by dehydrogenation and sintering in vacuum. The use of hydrides allowed to lower the sintering temperature below that of the α–β transition of the Ti6Al4V substrate. Measurement of the tensile bond strength confirmed a strong adhesion of the porous coating. Deposition of powders with different grain sizes resulted in porous titanium coatings with varying thickness, pore morphology, and surface roughness. The possibility to extend this coating technique to complex shaped implants is highlighted.
Recent developments demonstrated that liquid templates in the form of solid particles stabilized emulsions can be used to produce porous materials. The use of such emulsions offers the possibility to control the porous properties over a wide range of pore sizes and porosities for a variety of materials. In addition, the liquid nature of the template enables the formed products to be sintered without a low temperature debinding step. In this work, the electrophoretic deposition (EPD) of these liquid templates for the production of porous alumina is reported. The experimental parameters needed to obtain stable emulsions, their influence on the final porous properties, as well as the influence of the deposition parameters are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.