Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
The search of suitable combinations of stem cells, biomaterials and scaffolds manufacturing methods have become a major focus of research for bone engineering. The aim of this study was to test the potential of dental pulp stem cells to attach, proliferate, mineralize and differentiate on 3D printed polycaprolactone (PCL) scaffolds. A 100% pure Mw: 84,500 ± 1000 PCL was selected. 5 × 10 × 5 mm3 parallelepiped scaffolds were designed as a wood-pilled structure composed of 20 layers of 250 μm in height, in a non-alternate order ([0,0,0,90,90,90°]). 3D printing was made at 170 °C. Swine dental pulp stem cells (DPSCs) were extracted from lower lateral incisors of swine and cultivated until the cells reached 80% confluence. The third passage was used for seeding on the scaffolds. Phenotype of cells was determined by flow Cytometry. Live and dead, Alamar blue™, von Kossa and alizarin red staining assays were performed. Scaffolds with 290 + 30 μm strand diameter, 938 ± 80 μm pores in the axial direction and 689 ± 13 μm pores in the lateral direction were manufactured. Together, cell viability tests, von Kossa and Alizarin red staining indicate the ability of the printed scaffolds to support DPSCs attachment, proliferation and enable differentiation followed by mineralization. The selected material-processing technique-cell line (PCL-3D printing-DPSCs) triplet can be though to be used for further modelling and preclinical experiments in bone engineering studies.
For decades, jarosites have been precipitated by controlling Fe in hydrometallurgical circuits. In addition, their synthesis, characterization, precious metals incorporation, decomposition and leaching have led to important results in this field. Nowadays, new topics related to the synthesis of these compounds have directed studies for applications such as lithium-ion batteries (as cathodes or/and anodes). Additionally, in this work, the evaluation of these kinds of compounds as biomaterials to be used in bone tissue engineering is shown, which is a novel application of these jarosite type-compounds. The method used for the synthesis of these compounds has been improved, decreasing the temperature (from 95 to 70 °C) and synthesis time (from 24 to only 3 h), which allows the doping of the potassium jarosite with calcium, strontium and magnesium (JKCa, JKCa2 and JKAll). The powders obtained this way were characterized confirming the incorporation of these elements into the structure, and the biological assays allowing the cell proliferation at 10 days conclude that these compounds are viable as a biomaterial, due to their non-toxic property. On the other hand, these jarosites show osteoinduction when added to the swine dental pulp stem cells and can be used for orthodontic purpouses.
Bone Regeneration represents a clinical need, related to bone defects such as congenital anomalies, trauma with bone loss, and/or some pathologies such as cysts or tumors This is why a polymeric biomaterial that mimics the osteogenic composition and structure represents a high potential to face this problem. The method of obtaining these materials was first to prepare a stabilized hydrogel by means of physical bonds and then to make use of the lyophilization technique to obtain the 3D porous scaffolds with temperature conditions of −58 °C and pressure of 1 Pa for 16 h. The physicochemical and bioactive properties of the scaffolds were studied. FTIR and TGA results confirm the presence of the initial components in the 3d matrix of the scaffold. The scaffolds exhibited a morphology with pore size and interconnectivity that promote good cell viability. Together, the cell viability and proliferation test, Alamar BlueTM and the differentiation test: alizarin staining, showed the ability of physically stabilized scaffolds to proliferate and differentiate swine dental pulp stem cell (DPSCs) followed by mineralization. Therefore, the Cs-PCL-PVA-HA scaffold stabilized by physical bonds has characteristics that suggest great utility for future complementary in vitro tests and in vivo studies on bone defects. Likewise, this biomaterial was enhanced with the addition of HA, providing a scaffold with osteoconductive properties necessary for good regeneration of bone tissue.
Cleft palate (CP) is one of the most common birth defects, presenting a multitude of negative impacts on the health of the patient. It also leads to increased mortality at all stages of life, economic costs and psychosocial effects. The embryological development of CP has been outlined thanks to the advances made in recent years due to biomolecular successions. The etiology is broad and combines certain environmental and genetic factors. Currently, all surgical interventions work off the principle of restoring the area of the fissure and aesthetics of the patient, making use of bone substitutes. These can involve biological products, such as a demineralized bone matrix, as well as natural–synthetic polymers, and can be supplemented with nutrients or growth factors. For this reason, the following review analyzes different biomaterials in which nutrients or biomolecules have been added to improve the bioactive properties of the tissue construct to regenerate new bone, taking into account the greatest limitations of this approach, which are its use for bone substitutes for large areas exclusively and the lack of vascularity. Bone tissue engineering is a promising field, since it favors the development of porous synthetic substitutes with the ability to promote rapid and extensive vascularization within their structures for the regeneration of the CP area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.