This article investigates the extent to which transnational terrorist attacks altered U.S. foreign direct investment (FDI). Time-series intervention analysis shows that 9/11 generally had little lasting influence on U.S. FDI flows. Only a few countries that experienced subsequent terrorist attacks displayed a post-9/11 drop in U.S. FDI flows, which, except for Turkey, was not long-lived. For a panel of countries, this study also examines the effect that terrorist attacks against U.S. interests had on the stock of U.S. FDI. Based on a methodology previously applied to the study of U.S. assets abroad, we find that such attacks had a significant, but small, impact on these stocks in OECD countries. Greece and Turkey displayed the largest declines—5.7 percent and 6.5 percent of their average U.S. FDI stocks, respectively. There was no such effect for non-OECD countries. Terrorist efforts to limit U.S. FDI have been cost-effective.
Criminality, Inequality, Panel data model, GMM estimator, Granger causality, K42, C23, Z13,
ResumoO objetivo deste artigo é estimar a curva de Phillips novo-Keynesiana para o Brasil. Usamos diferentes proxies para variáveis e com amostras de diferentes períodos para checar a robustez do modelo. Os seguintes resultados merecem destaque. Primeiro, a expectativa inflação e a inflação passada têm relevância na dinâmica da inflação e sua importância das expectativas aumenta a partir de 2002. Segundo, o efeito do desemprego sobre a inflação parece estar localizado apenas no curto prazo. Por fim, parece haver uma quebra estrutural no efeito de uma mudança do câmbio sobre a inflação. Com dados a partir de 2002, o efeito de um choque cambial é negativo. Contudo, com a amostra desde 1995, o efeito de uma desvalorização cambial é positivo sobre a inflação.Palavras-chave: Curva de Phillips; Inflação; Desemprego; Choque cambial; GMM-HAC. AbstractThe goal of this article is to estimate the New Keynesian Phillips Curve for Brazil economy. The robustness was checking using not only different proxies but also samples with distinct temporal dimension. The main achievements are the following. Firstly, the inflationary inertia and expectation of inflation are important variables for the dynamic of inflation although the relevance of expectation rise from 2002 onwards. Secondly, the effect of unemployment on inflation seems to be located in the short term. Finally, the relationship between the exchange rate and inflation is marked by a structural break. With data from 2002, the effect of exchange rate shock is negative. But, when one uses data from 1995, the effect on inflation is positive impact.
The Brazilian municipalities show an enormous inequality on its development level. Even within the states considered relatively prosperous, there are huge internal disparities on income levels. The richest Brazilian municipality"s GDP per capita is about 190 times greater than the poorest municipality"s, according to IBGE (2000) database. A possible explanation for this phenomenon relies on institutional theory. Many theoretical and empirical studies, mainly based on crosscountry data, emphasize the role played by institutions on the determination of long run development. Nevertheless, there still is little research concerning the income differences within the national territory and its connection to institutional quality. The literature points out that institutions matter for the level of economic development because of their effects on political power distribution, generation of economic opportunities, innovation, human capital accumulation, and so on. Based on this assumption, the present study main goal is to analyze the effects of Brazilian municipalities" institutional quality on their GDP per capita levels. The results indicate that institutions are relevant and its importance is greater for large municipalities. On the other hand, human capital human capital is more important to small municipalities. To address the endogeneity problem inherent to the relationship between institutions and development, we employ the 2SLS method.
Sumário: 1. Introdução; 2. Metodologia; 3. Base de dados; 4. Resultados econométricos; 5. Conclusões.Palavras-chave: retorno em escolaridade; viés de seleção amostral; pseudo painel; viés de habilidade; equação de salários.Códigos JEL: C31; I29.O objetivo deste trabalhoé investigar o retorno em escolaridade para o Brasil. Para tal, verifica-se por diferentes procedimentos se diferentes fontes de viés estariam prejudicando a estimação fidedigna para a equação de salários, e com isso gerando viés para o retorno em escolaridade. O primeiro método tem por base o estimador de Heckman (1979) sugerindo que o viés possa ser causado pela estratégia de "job search" que faz com que o salário não dependa apenas da oferta de trabalho como também da procura por emprego. A segunda abordagem faz uso da metodologia de Garen (1984) que permite tratar o grau de escolaridade como uma escolha racional do agente. Por fim, investiga-se a existência de viés de variável omitida causado pela ausência de uma variável que possa medir a habilidade do indivíduo (Griliches, 1977). O tratamento empírico neste caso foi feito com base na metodologia de pseudo painel (Deaton, 1985). Cada um dos resultados gerados por esses três estimados são comparados com os obtidos por OLS. Entre as principais conclusões desta pesquisa pode-se destacar que a evidência acerca da hipótese de vantagens comparativas de Willis e Rosen (1979), indícios de endogeneidade na escolha da escolaridade e pouca importância para o viés de variável omitida.The objective of this paper is to investigate the returns to schooling issue for Brazil based on distinct methodologies in order to reach a reliable estimate for this type of measurement. The first one suggests that bias is caused by the job search strategy adopted * Artigo recebido em abr. 2003 e aprovado em fev. 2004.
Summary: 1. Introduction; 2. Data set; 3. Cycles; 4. The standard growth model; 5. The indivisible labor model; 6. Findings from simulation; 7. Conclusions. Key words: real business cycles; aggregate fluctuations; technology shocks. JEL codes: E32 and O41. This paper documents the empirical relationship in postwar Brazil between the GNP and other key variables such as consumption, investment, productivity and hours worked. Since many of those series were not available to Brazil we also had to build a data-set, which includes consumption of non-durables, capital and hours worked. We use two filters to extract the cycles (the usual Hodrick-Prescott filter and a band-pass filter); this procedure was taken to avoid conclusions that depend too much on the filter in use. The paper also provides simulations of two dynamic general equilibrium models (the standard RBC model and the indivisible labor model) and tries to match the facts of the artificial economy with those of the actual economy. We show that the basic models fail to replicate some of the observed facts.Este artigo documenta as relações entre o PNB e outras variáveis macroeconômicas, tais como: consumo, investimento, produtividade e horas trabalhadas, observadas no Brasil. Desde que muitas destas séries não estavam disponíveis construímos uma base de dados que inclui consumo de não-duráveis, capital e horas trabalhadas. Para extrair o ciclo utilizamos dois filtros (o filtro Hodrick-Prescott e um filtro do tipo band-pass); este procediment foi tomado para evitar conclusões que dependessem do filtro utilizado. O artigo também apresenta simulações de dois modelos de equilíbrio geral dinâmico (o modelo básico de ciclos reais e o modelo com trabalho indiviível) e compara os fatos gerado pelos modelos com os observados para a economia brasileira. Este exercício mostra que os modelos utilizados não são capazes de reproduzir alguns dos fatos observados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.