Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.
Three populations composed of a total of 215 doubled haploid lines and 151 F2 individuals were used to design an intraspecific consensus map of pepper (Capsicum annuum L.). The individual maps varied from 685 to 1668 cM with 16 to 20 linkage groups (LGs). The alignment of the three individual maps permitted the arrangement of 12 consensus major linkage groups corresponding to the basic chromosome number of pepper and displaying a complex correspondence with the tomato map. The consensus map contained 100 known-function gene markers and 5 loci of agronomic interest (the disease-resistance loci L, pvr2, and Pvr4; the C locus, which determines capsaicin content; and the up locus, controlling the erect habit of the fruits). The locations of three other disease-resistance loci (Tsw, Me3, and Bs3) and the y locus, which determines the yellow fruit colour, were also found on this consensus map thanks to linked markers. Here we report on the first functional detailed map in pepper. The use of candidate gene sequences as genetic markers allowed us to localize four clusters of disease-resistance gene analogues and to establish syntenic relationships with other species.
The resistance to Leveillula taurica from an african pepper line H3 {Capsicum annuum) was evaluated and analysed, using the androgenetic haplodiploid progeny from an F, hybrid between H3 and a susceptible line. Tests were performed in natural infection conditions in two locations (France and Sicily). Stable behaviour of the parental and haplodiploid lines was observed in both locations, confirming the high level and stability of this resistance source in Mediterranean countries. Heritability of resistance was high and genetic analysis suggested that it is under oligogenic control. However, the number of genetic factors involved in resistance depended on infection conditions: two or three genetic factors with additive and partial dominance effects appear sufficient to confer resistance at the beginning of the epidemic or in weak infection conditions. However, additional genes are necessary to slow down further disease progress and secondary infections and at least five genetic factors are necessary to confer resistance in severe infection. In this case, both additive and epistatic effects are significant. The transfer of this resistance into cultivars will require the use of artificial inoculation procedures to control the severity of the test.
Partial restriction of cucumber mosaic virus (CMV) long-distance movement originating from the Capsicum annuum inbred line 'Vania' was assessed in a doubled-haploid progeny using two screening methods: the first allowed one to assess the resistance of adult plants decapitated above the fourth leaf and inoculated on the third leaf using a common CMV strain, and the second allowed one to assess CMV resistance to long-distance movement on seedlings inoculated using an atypical CMV strain. For both resistance tests, the behavior of the F(1) hybrid between 'Vania' and the susceptible line 'H3' indicated that partial resistance is inherited as a dominant trait. Phenotypic data from the two screening methods were correlated but the one performed on seedlings was much more severe. A subset of 184 molecular markers well-distributed over the pepper genome was selected for QTL mapping using the composite interval mapping (CIM) method. A total of seven genomic regions, including one major effect and several minor effect QTLs, were shown to be associated with partial restriction of CMV long-distance movement. These results are compared with those already obtained in pepper and also in other solanaceous crops, potato and tomato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.