Background
Many circRNAs have been reported to play important roles in cancer development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in esophageal carcinoma (EC) remains unclear. In the current study, we investigated the potential role of circPVT1 in esophageal carcinoma.
Methods
Quantitative real-time PCR was performed to detect circPVT1 levels. CircPVT1-specific siRNA or plasmids were used to knock down or overexpression the target RNA. Hoechst Staining was implemented to evaluate the ratio of cell apoptosis. Transwell migration assays were carried out to study the effects of circPVT1 on esophageal squamous cell carcinoma cell invasion. RegRNA 2.0 was used for bioinformatics analysis. The expression levels of Pax-4, Pax-6, PPARα and PPAR-γ were assessed using Western blot.
Results
In the present study, we demonstrated a significant up-regulation of circPVT1 levels in EC tissues and cancer cell lines. The levels of circPVT1 decreased significantly when the cells were maintained to over-confluence. These results suggested a potential role for circPVT1 in cell proliferation. In addition, overexpressing circPVT1 in TE-10 cell promoted invasive ability of cancer cell. In contrast, siRNA knockdown of circPVT1 inhibited this phenomenon, leading to increased apoptosis levels of TE-10 cell. What’s more, miR-4663 had the effect of inhibiting tumor growth by downregulated Paxs and upregulated PPARs. Whereas, after the addition of circPVT1, this effect no longer worked, suggesting that circPVT1 may affect the malignancy of the tumor by affecting miRNA and regulating the levels of Paxs and PPARs.
Conclusions
Collectively, our study reveals a critical role for circPVT1 in esophageal carcinoma, which may provide new insights of this circRNA as a biomarker for the diagnosis and treatment target of EC.
The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 °C. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.