This paper reports the theoretically investigated aerodynamic imbalance of the propeller blade, as well as correcting masses for balancing it. It has been established that the aerodynamic forces acting on the propeller blade can be balanced by the adjustment of masses. This is also true for the case of compressed air (gas) provided that the blades are streamlined by laminar flow. That makes it possible to use rotor balancing methods to study the aerodynamic forces acting on the propeller blade. The rotating blade mainly generates torque aerodynamic imbalance due to a lift force. A much smaller static component of the aerodynamic imbalance is formed by the drag force acting on the blade. The correcting mass located in the propeller plane balances both static and torque components of the aerodynamic imbalance in its correction plane. A second correcting mass (for example, on the electric motor shank) balances the torque component of aerodynamic imbalance in its correction plane. The calculations are simplified under the assumption that the equilibrium of aerodynamic forces is perpendicular to the chord of the blade. For approximate calculations, one can use information about the approximate location of the pressure center. The aerodynamic forces acting on the blade can be determined on the basis of the correcting masses that balance them. The accuracy in determining the aerodynamic forces could be improved by measuring a lift force. The computational experiment has confirmed the theoretical results formulated above. The experiment further proves the possibility of applying the devised theory for propellers whose rotation speed changes with a change in the angles of blade installation. The findings reported here could be used both for devising methods of propeller balancing and for constructing methods to study the aerodynamic forces acting on the blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.