Background: As a malignant tumor, the progression of osteosarcoma (OS) is mediated by multiple regulators, including circular RNAs (circRNAs). However, the role of circ_0000885 in OS is unclear. Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of circ_0000885, miR-1294 and fibroblast growth factor receptor 1 (FGFR1). Cell proliferation was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay. Flow cytometry and transwell assay were employed to determine the cell cycle distribution, cell migration and invasion, respectively. Moreover, the relationship between miR-1294 and circ_0000885 or FGFR1 was confirmed by dual-luciferase reporter assay. The protein level of FGFR1 was assessed via Western blot (WB) analysis. Animal experiments were used to verify the effect of circ_0000885 silencing on OS tumor growth in vivo. Results: Circ_0000885 level was increased in OS tissues and cells. Knockdown of circ_0000885 repressed the proliferation, migration, invasion and induced cell cycle arrest in OS cells. There was a binding relationship between miR-1294 and circ_0000885, and miR-1294 inhibitor could reverse the inhibitory effect of silenced circ_0000885 on OS progression. MiR-1294 could target FGFR1, and overexpressed FGFR1 could invert the suppression effect of miR-1294 mimic on OS progression. Silencing of circ_0000885 hindered FGFR1 expression, while this effect could be recovered by miR-1294 inhibitor. In addition, circ_0000885 knockdown reduced OS tumor growth via regulating the FGFR1 expression by sponging miR-1294 in vivo. Conclusion: Circ_0000885 played an active role in OS progression, indicating that it might be a potential target for OS therapy.
Background: Osteosarcoma (OS) is the most common primary malignant tumor originating in bone. Immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) participates in tumor immune tolerance and promotes tumor progression, while the study of IDO1 in OS is limited.Methods: Immunohistochemistry analysis was performed to test the expression of IDO1 and Ki67. The relationship between IDO1 or Ki67 positive count and clinical stage of the patient was analyzed. Laboratory test indexes including serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), white blood cell (WBC) count and C-reactive protein (CRP) at diagnosis of OS patients were collected. The relationship between positive count of IDO1 and Ki67 or laboratory test indexes was analyzed by Pearson’s correlation analysis. IDO1 stably overexpressed cell lines of these cells (MG63 OE, 143B OE and hFOB1.19 OE) were constructed and validated by Western blot and Elisa. Exosomes were isolated from conditioned culture media of these cells and were identified by Zetaview nanoparticle tracking analyzer. Next-generation sequencing was conducted to identify miRNAs enriched in exosomes. Differentially expressed miRNAs (DE miRNAs) were verified in clinical samples and cell lines by qPCR. Biological processes and cell components analysis of DE miRNAs was conducted by GO enrichment analysis using the protein interaction network database.Results: Immunosuppressive enzyme IDO1 was highly expressed in tumor tissues. 66.7% (6/9) of the tissues showed moderately or strongly positive immunostaining signal of IDO1, and 33.3% (3/9) were weakly positive. The expression of IDO1 was positively related to Ki67 and associated with prognostic-related clinical features of OS patients. Overexpression of IDO1 significantly affected the exosome-derived miRNA subsets from MG63, 143B and hFOB1.19 cells. A total of 1244 DE miRNAs were identified, and hsa-miR-23a-3p was further screened as key DE miRNA involved in the progression of OS. GO analysis of target genes of the DE miRNA results showed that target enrichment in the functions of immune regulation and tumor progression.Discussion: Our results indicate that IDO1 has the potential to promote the progression of OS that is related to miRNAs mediated tumor immunity. Targeting IDO1-mediated hsa-miR-23a-3p may be a potential therapeutic strategy for OS treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.