A finite difference scheme, based upon the Crank-Nicolson scheme, is applied to the numerical approximation of a two-dimensional time fractional non-Newtonian fluid model. This model not only possesses a multi-term time derivative, but also contains a special time fractional operator on the spatial derivative. And a very important lemma is proposed and also proved, which plays a vital role in the proof of the unconditional stability. The stability and convergence of the finite difference scheme are discussed and theoretically proved by the energy method. Numerical experiments are given to validate the accuracy and efficiency of the scheme, and the results indicate that this Crank-Nicolson difference scheme is very effective for simulating the generalized non-Newtonian fluid diffusion model.
In this paper, we develop a new application of the Mittag-Leffler function that will extend the application to fractional homogeneous differential equations, and propose a Mittag-Leffler function undetermined coefficient method. A new solution is constructed in power series. When a very simple ordinary differential equation is satisfied, no matter the original equation is linear or nonlinear, the method is valid, then combine the alike terms, compare the coefficient with identical powers, and the undetermined coefficient will be obtained. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method, some examples are provided, and the solutions are in the form of generalized Mittag-Leffler function. The results reveal that the approach introduced here are very effective and convenient for solving homogeneous differential equations with fractional order.
A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily handled by the use of He’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples and the methodology is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.