a b s t r a c tThis study makes the first attempt to apply the Kansa method in the solution of the time fractional diffusion equations, in which the MultiQuadrics and thin plate spline serve as the radial basis function. In the discretization formulation, the finite difference scheme and the Kansa method are respectively used to discretize time fractional derivative and spatial derivative terms. The numerical solutions of one-and two-dimensional cases are presented and discussed, which agree well with the corresponding analytical solution.
The traditional Richards’ equation implies that the wetting front in unsaturated soil follows Boltzmann scaling, with travel distance growing as the square root of time. This study proposes a fractal Richards’ equation (FRE), replacing the integer-order time derivative of water content by a fractal derivative, using a power law ruler in time. FRE solutions exhibit anomalous non-Boltzmann scaling, attributed to the fractal nature of heterogeneous media. Several applications are presented, fitting the FRE to water content curves from previous literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.