Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine–imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics.
Growing evidence suggests that the presence of a subpopulation
of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria
is responsible for the prolonged duration of tuberculosis treatment.
The discovery of new antitubercular agents active against this subpopulation
may help in developing new strategies to shorten the time of tuberculosis
therapy. Recently, the maintenance of a low level of bacterial respiration
was shown to be a point of metabolic vulnerability in Mycobacterium
tuberculosis. Here, we describe the development of a hypoxic
model to identify compounds targeting mycobacterial respiratory functions
and ATP homeostasis in whole mycobacteria. The model was adapted to
1,536-well plate format and successfully used to screen over 600,000
compounds. Approximately 800 compounds were confirmed to reduce intracellular
ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity
against hypoxic non-replicating M. tuberculosis were
further validated. The resulting collection of compounds that disrupt
ATP homeostasis in M. tuberculosis represents a valuable
resource to decipher the biology of persistent mycobacteria.
Down sydrome (DS) is a relatively frequent chromosomal disorder, which has no safe and effective method of prenatal diagnosis to date. The present study was designed to identify DS biomarkers. We quantified the changes in the umbilical cord blood protein levels between DS-affected and healthy (control) pregnant females using isobaric tags for relative and absolute quantification (iTRAQ) and Gene Ontology (GO) analysis. A total of 505 proteins were identified, and of these, five proteins showed significantly different concentrations between the DS and the control group. These proteins may thus be relevant to DS and constitute potential DS biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.