Abstract-This paper presents an overview of the theory and currently known techniques for multi-cell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacitylimiting factor, multi-cell cooperation can dramatically improve the system performance. Remarkably, such techniques literally exploit inter-cell interference by allowing the user data to be jointly processed by several interfering base stations, thus mimicking the benefits of a large virtual MIMO array. Multicell MIMO cooperation concepts are examined from different perspectives, including an examination of the fundamental information-theoretic limits, a review of the coding and signal processing algorithmic developments, and, going beyond that, consideration of very practical issues related to scalability and system-level integration. A few promising and quite fundamental research avenues are also suggested.
The potential of using of millimeter wave (mmWave) frequency for future wireless cellular communication systems has motivated the study of large-scale antenna arrays for achieving highly directional beamforming. However, the conventional fully digital beamforming methods which require one radio frequency (RF) chain per antenna element is not viable for large-scale antenna arrays due to the high cost and high power consumption of RF chain components in high frequencies.To address the challenge of this hardware limitation, this paper considers a hybrid beamforming architecture in which the overall beamformer consists of a low-dimensional digital beamformer followed by an RF beamformer implemented using analog phase shifters. Our aim is to show that such an architecture can approach the performance of a fully digital scheme with much fewer number of RF chains. Specifically, this paper establishes that if the number of RF chains is twice the total number of data streams, the hybrid beamforming structure can realize any fully digital beamformer exactly, regardless of the number of antenna elements. For cases with fewer number of RF chains, this paper further considers the hybrid beamforming design problem for both the transmission scenario of a point-to-point multipleinput multiple-output (MIMO) system and a downlink multiuser multiple-input single-output (MU-MISO) system. For each scenario, we propose a heuristic hybrid beamforming design that achieves a performance close to the performance of the fully digital beamforming baseline. Finally, the proposed algorithms are modified for the more practical setting in which only finite resolution phase shifters are available. Numerical simulations show that the proposed schemes are effective even when phase shifters with very low resolution are used.Index Terms-Millimeter wave, large-scale antenna arrays, multiple-input multiple-output (MIMO), multi-user multipleinput single-output (MU-MISO), massive MIMO, linear beamforming, precoding, combining, finite resolution phase shifters.
Abstract-This paper considers the transmitter optimization problem for a multiuser downlink channel with multiple transmit antennas at the base-station. In contrast to the conventional sum-power constraint on the transmit antennas, this paper adopts a more realistic per-antenna power constraint, because in practical implementations each antenna is equipped with its own power amplifier and is limited individually by the linearity of the amplifier. Assuming perfect channel knowledge at the transmitter, this paper investigates two different transmission schemes under the per-antenna power constraint: a minimum-power beamforming design for downlink channels with a single antenna at each remote user and a capacity-achieving transmitter design for downlink channels with multiple antennas at each remote user. It is shown that in both cases, the per-antenna downlink transmitter optimization problem may be transformed into a dual uplink problem with an uncertain noise. This generalizes previous uplink-downlink duality results and transforms the per-antenna transmitter optimization problem into an equivalent minimax optimization problem. Further, it is shown that various notions of uplink-downlink duality may be unified under a Lagrangian duality framework. This new interpretation of duality gives rise to efficient numerical optimization techniques for solving the downlink per-antenna transmitter optimization problem.
Fractional programming (FP) refers to a family of optimization problems that involve ratio term(s). This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem-in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper. Index Terms-Fractional programming (FP), quadratic transform, power control, beamforming, energy efficiency I. OVERVIEWO PTIMIZATION is a key aspect of communication system design [3], [4]. This two-part work explores the application of fractional programming (FP) in the design and optimization of communication systems. FP refers to a family of optimization problems containing ratio term(s). Its history can be traced back to an early paper on economic expansion [5] by von Neumann in 1937; it has since been studied extensively in broad areas in economics, management science, information theory, optics, graph theory, and computer science [6]- [8]. For example, FP has recently been applied in [9]-[12] to solve the energy efficiency maximization problem for wireless communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.