In this work, a solar and flash center was created by combining two organic dyes, erythrosine and rhodamine, with completely different concentrations. Throughout the spectra of fluorescence (F) and absorbance (A), the quantitative efficiency of the dye mixture was determined. It was manufactured from a panel of epoxy containing a mixture of the two dyes using open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), and solar cell efficiency (η). It was found that a 1 mm thickness of the panel works best in increasing the efficiency of the photovoltaic cell.
In our work, a P-type porous silicon (PSi) with orientation (100) have been prepared using the chemical etching method; the goal is to study the electrical properties of PSi samples prepared with completely different etching current (7, 9, 11 and 13) mA and glued for (15 min) anodization time. Depending on the atomic force microscopy (AFM) investigation, we notice the roughness of Si surface increases with increasing etching current because of increases within the dimension (diameter) of surface pits. The electrical and optoelectronic properties of prepared PSi, specifically capacitance-voltage (C-V), current-voltage (I-V), responsivity and detectivity, are analyzed. It had been found that electrical characteristics of porous Si samples measured in dark (Id) and below illumination (IPh) will be fitted well by the equations of thermal emission. From this point of view, Schottky barrier height (ɸB) and ideality factor (n) of made-up photodetectors were calculated. We tended to determine from I-V characteristics of a dark, and illuminations that the pass current through the PSi layer reduced by increasing the etching current, as a result of increasing the electrical resistance of PSi layer and therefore the optimum value of ideality factor is (2.7), whereas from C-V characteristic we determined that in-built potential accumulated with increasing etching current. The results show that there are clear results for better performance of photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.