Out-of-band radiation emitted from an extreme ultraviolet laser-produced plasma, formed on a solid tin target, was measured over several angles between 25° and 85° with respect to the target normal for six energy bands between 200 and 1000nm. The optical and target system was rotated with respect to the detector and the intensity of the radiation was measured using an absolutely calibrated filter/photodiode combination. The emission was dominated by radiation in the 214nm band. A cosine function fitted to the angular distribution of the total radiation yielded an exponent of 0.23±0.02.
Discharge produced plasma (DPP) devices are being used as a light source for Extreme Ultraviolet (EUV) Lithography. A key challenge for DPP is achieving sufficient brightness to support the throughput requirements of exposure tools for high-volume manufacturing lithography. An integrated model is being developed to simulate the environment of the EUV source and optimize the output of the source. The model describes the hydrodynamic and optical processes that occur in DPP devices. It takes into account plasma evolution and magnetohydrodynamic processes as well as detailed photon radiation transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of magnetic compression and diffusion in a cylindrical geometry is used. Several models are being developed for opacity calculations: a collisional radiation equilibrium model, a self-consistent field model with Auger processes, and a non-stationary kinetic model. Radiation transport for both continuum and lines with detailed spectral profiles is taken into account. The developed models are being integrated into the HEIGHTS-EUV computer simulation package. Preliminary results of a numerical simulation of xenon gas hydrodynamics and EUV radiation output are presented for various plasma conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.