Cellular automata simulation of recrystallization in two dimensions is carried out. The simulated microstrutural evolution is compared in detail with the predictions from mathematically exact analytical theories considering both kinetic and geometrical aspects. Very good agreement is observed between the cellular automata simulation and the theoretical results. Moreover, the simulated data is used to test new expressions recently derived to describe the evolution of the interfaces between recrystallized grains. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation
The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing such a situation are studied. Cellular automata simulation of recrystallization in two dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The simulation results are compared in detail with microstrutural descriptors normally used to follow transformation evolution. It is shown that the contiguity is particularly relevant to detect microstructural deviations from randomness. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation
Microstructural evolution in three dimensions of nucleation and growth transformations is simulated by means of cellular automata. Two types of nucleation are considered: site-saturated nucleation and constant nucleation rate. The simulated microstrutural evolution agrees very well with exact analytical expressions. The simulated data also gives very good agreement with expressions derived to describe the evolution of the interfaces between transformed grains.
Os materiais metálicos têm suas propriedades mecânicas alteradas quando são deformados a frio. O tratamento térmico de recristalização é uma das ferramentas capazes de recuperar a microestrutura e as propriedades dos metais deformados. Durante a recristalização, grãos "novos", livres de deformação, se formam. Após a recristalização, o metal apresenta microestrutura similar à que existia antes da deformação. A recristalização ocorre através da nucleação e do crescimento desses novos grãos. (1,2) A teoria fenomenológica de Johnson e Mehl, (3) Avrami (4) e Kolmogorov, (5) teoria de JMAK, é muito empregada no modelamento analítico da recristalização. A teoria de JMAK e o conceito de caminho microestrutural de DeHoff, (6) utilizada por Vandermeer (7) são ferramentas matemáticas utilizadas para descrever analiticamente a recristalização. Neste trabalho, um código computacional que simula a recristalização utilizando o método do autômato celular (AC) (8,9) em 3D é apresentado. Quando as mesmas considerações utilizadas nas teorias analíticas são empregadas na simulação do autômato celular em 3D, os resultados têm uma boa concordância com as soluções analíticas matematicamente exatas. Além da comparação da simulação com a teoria, é feita uma avaliação do efeito da distribuição dos núcleos na cinética e no caminho microestrutural.
Cellular automata simulation in three dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The effect of clustering in three dimensions is found to be much more difficult to detect using conventional microstructural path analysis than in two dimensions. Microstructural path equations fit simulated data well, even when the nuclei are non-randomly located. However, the parameters obtained by means of this fitting lead to erroneous time dependent velocities. Therefore, measuring a descriptor that is sensitive to non-randomness such as the contiguity is even more important in three than in two dimensions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.