Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e.g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (> 95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under increasing anthropogenic pressure.KEY WORDS: Mechanistic models · Dynamic energy budget · Bivalve · Parameterisation methods · Brachidontes pharaonis · Mediterranean Sea Resale or republication not permitted without written consent of the publisher
Aim We used a coupled biophysical ecology (BE)-physiological mechanistic modelling approach based on the Dynamic Energy Budget theory (DEB, Dynamic energy budget theory for metabolic organisation, 2010, Cambridge University Press, Cambridge; DEB) to generate spatially explicit predictions of physiological performance (maximal size and reproductive output) for the invasive mussel, Brachidontes pharaonis.Location We examined 26 sites throughout the central Mediterranean Sea.Methods We ran models under subtidal and intertidal conditions; hourly weather and water temperature data were obtained from the Italian Buoy Network, and monthly CHL-a data were obtained from satellite imagery.Results Mechanistic analysis of the B. pharaonis fundamental niche shows that subtidal sites in the Central Mediterranean are generally suitable for this invasive bivalve but that intertidal habitats appear to serve as genetic sinks.Main conclusions A BE-DEB approach enabled an assessment of how the physical environment affects the potential distribution of B. pharaonis. Combined with models of larval dispersal, this approach can provide estimates of the likelihood that an invasive species will become established.
Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low-and mid-elevation ranges, particularly in the spring shooting season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.