This paper presents a weight optimization method for a nonlinear model predictive controller (NMPC) based on the genetic algorithm (GA) for ship trajectory tracking. The weight coefficients Q and R of the objective function in NMPC are obtained via the real-time optimization of the genetic algorithm instead of the trial and error method, which improves the efficiency and accuracy of the controller. In addition, targeted improvements are made to the internal crossover operator, mutation operator, crossover rate, and mutation rate of the genetic algorithm. The simulation comparison of trajectory tracking between NMPC with real-time-optimized weight coefficients and the one with constant coefficients is performed. Finally, the simulation result shows that the controller with real-time-optimized weight coefficients has a better trajectory tracking effect than that with constant weight coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.