Background: Numerous rubbers tapping systems have been developed to increase latex yield. The objectives were (i) to test the efficiency of stimulation tapping systems and (ii) to describe the sucrose balance between supply and demand in the latex-producing bark of the rubber tree.Methods: The experiment was conducted at Thepa Research Station in Songkhla province. Eleven-year-old of RRIM600 clone was investigated. The experiment was designed as One Tree Plot Design (OTPD) with 4 tapping systems (Treatment; T) and 4 replications. Treatments were T1: S/3 2d/3, T2: S/6 d3, T3: S/6 d3 with RRIMFLOW and T4: S/6 d3 with LET. Result: S/6 d3 with RRIMFLOW tapping system in young-tapping rubber tree provided significantly highest averaged latex yield per tapping. The average cumulative latex yield was no significant difference comparing with the traditional tapping system. Rubber girth increment had no significant difference among treatments (P greater than 0.05). An averaged sucrose distribution in the trunk level of none stimulation treatments were high to very high sucrose values; however, it was medium sucrose values in the stimulation treatments. Inorganic phosphorus distribution in the trunk level showed medium to high values. Hence, the finding indicated that the use of ethylene stimulation together with tapping system should be considered for rubber tree and to control the balance of sucrose content in the trunk level of rubber tree.
Some of the authors of this publication are also working on these related projects:Land and labor productivity, good agricultural practices in rubber tree cultivation View project Metabolism and carbon allocation : Sink-source relationship at tree scale in relation with the latex Tapping and ethylene stimulation induces the dynamic change of latex cell metabolism. Those changes under the implement of low frequency tapping systems with ethylene stimulation were investigated during the both periods (low yield and the high yield) of the year of production. The experiment was established at Thepa Research Station, Songkhla province by using 9-year-old rubber trees (clone RRIM 600). An experiment was arranged as One Tree Plot design, there were five treatments following T1: S/3 d1 2d/3, T2: S/2 d2, T3: S/2 d3 ET 2.5% Pa1(1) 8/y (m), T4: S/3 d2 ET 2.5% Pa1(1) 4/y (m) and T5: S/3 d3 ET 2.5% Pa1(1) 12/y (m). There were three replicates in each treatment. It was found that ethylene stimulation affected the responses of initial flow rate (IFR), plugging index (PI), average latex yield (AY) and sucrose content (Suc). There was a significant difference among the treatments in the both periods. After ethylene stimulation, IFR of the T3 and T5 were superior in the low yield period and showed inferior in the high yield period compared with the T1. PI rapidly decreased in the ethylene application treatments in the both periods. AY of the T3 was the highest in the low yield period and AY of the ethylene stimulation treatments was higher than non-stimulated treatments in the high yield period. Suc of the T3 only increased on the first tapping day after stimulation in the both periods. Expression to the ethylene stimulation in the low yield period was higher than the high yield period. It was remarkable that the stimulation was effecti vely expressed during a full canopy stage. With the positive impact of stimulation on latex physiological parameters, latex yield under low frequency tapping could be compensated by ethylene application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.