Many reasons for why extraterrestrial intelligences might avoid communications with our civilization have been proposed. One possible scenario is that all civilizations follow the lead of some particularly distinguished civilization. This paper will examine the impact the first successful civilization could have on all other subsequent civilizations within its sphere of influence and the ramifications of this as it relates to the Fermi Paradox. Monte Carlo simulation is used to map the inter-arrival times of early civilizations and to highlight the immense epochs of time that the earliest civilizations could have had the Galaxy to themselves.
A model of the spatial emergence of an interstellar civilization into a uniform distribution of habitable systems is presented. The process of emigration is modelled as a three-dimensional probabilistic cellular automaton. An algorithm is presented which defines both the daughter colonies of the original seed vertex and all subsequent connected vertices, and the probability of a connection between any two vertices. The automaton is analysed over a wide set of parameters for iterations that represent up to 250 000 years within the model's assumptions. Emigration patterns are characterized and used to evaluate two hypotheses that aim to explain the Fermi Paradox. The first hypothesis states that interstellar emigration takes too long for any civilization to have yet come within a detectable distance, and the second states that large volumes of habitable space may be left uninhabited by an interstellar civilization and Earth is located in one of these voids.
Most searches for alien radio transmission have focused on finding omni-directional or purposefully earth-directed beams of enduring duration. However, most of the interesting signals so far detected have been transient and non-repeatable in nature. These signals could very well be the first data points in an ever-growing data base of such signals used to construct a probabilistic argument for the existence of extraterrestrial intelligence. This paper looks at the effect base rate bias could have on deciding which signals to include in such an archive based upon the likely assumption that our ability to discern natural from artificial signals will be less than perfect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.