Recent technological advances in the performance of small micro-lasers and multi-channel multi-event photo-detectors have enabled the development of experimental airborne lidar (light detection and ranging) systems based on a low-SNR (LSNR) paradigm. Due to dense point spacing (tens of points per square meter) and sub-decimeter range resolution, LSNR lidar can likely enable detection of meter-scale targets that would go unnoticed by traditional lidar technology. Small vehicle obstructions and other similar targets in the beach and littoral zones are of particular interest, because of LSNR lidar's applicability to the near-shore environment and the general desire to improve detection of antivehicle and antipersonnel obstacles in the coastal zone.A target detection procedure is presented that exploits the detailed information available from LSNR lidar data while diminishing the effect of spurious noise events. Consideration is given to detection in both topographic and bathymetric scenarios. Data sets for target detection analysis are supplied by a numerical sensor simulator developed at the University of Florida. Target detection performance is evaluated as a function of environmental characteristics, such as water clarity and depth, and system parameters, specifically transmitted pulse energy and laser pulse repetition frequency. Analysis of results with regards to consideration for future system design is discussed.
We discuss the optimization of components in a single-wavelength airborne laser bathymeter that is intended for a low-power unmanned aerial vehicle platform. The theoretical minimum energy requirement to detect the submerged sea floor in shallow (< 5 m) water using a low signal-to-noise ratio (LSNR) detection methodology is calculated. Results are presented from tests of a prototype light detection and ranging (LiDAR) instrument that was developed by the University of Florida, Gainesville. A green wavelength (532 nm), 100-beamlet, low-energy (35-nJ/beamlet), short-pulse (480 ps) laser ranging system was operated from a low-altitude (500-m) aircraft, with a multichannel sensor that is capable of single photoelectron sensitivity and multiple stops. Data that were collected during tests display vertical structure in shallow-water areas based on fixed threshold crossings at a single-photon sensitivity level. A major concern for the binary detection strategy is the reliable identification and removal of noise events. Potential causes of ranging errors related to photomultiplier tube afterpulsing, impedance mismatching, and gain block overdrive are described. Data collection/processing solutions based on local density estimation are explored. Previous studies on LSNR performance metrics showed that short (15-cm) dead time could be expected in the case of multiple scattering objects, indicating the possibility of seamless topographic/bathymetric mapping with minimal discontinuity at the waterline. LiDAR depth estimates from airborne profiles are compared to on-site measurements, and near-shore submerged feature identification is presented.Index Terms-Airborne laser swath mapping (ALSM), bathymetry, light detection and ranging (LiDAR), photonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.