Field experiments were conducted on wheat to study the effects of foliar-applied iodine(I) alone, Zn (zinc) alone, and a micronutrient cocktail solution containing I, Zn, Se (selenium), and Fe (iron) on grain yield and grain concentrations of micronutrients. Plants were grown over 2 years in China, India, Mexico, Pakistan, South Africa, and Turkey. Grain-Zn was increased from 28.6 mg kg −1 to 46.0 mg −1 kg with Zn-spray and 47.1 mg −1 kg with micronutrient cocktail spray. Foliar-applied I and micronutrient cocktail increased grain I from 24 μg kg −1 to 361 μg kg −1 and 249 μg kg −1 , respectively. Micronutrient cocktail also increased grain-Se from 90 μg kg −1 to 338 μg kg −1 in all countries. Average increase in grain-Fe by micronutrient cocktail solution was about 12%. The results obtained demonstrated that foliar application of a cocktail micronutrient solution represents an effective strategy to biofortify wheat simultaneously with Zn, I, Se and partly with Fe without yield trade-off in wheat.
Drought is a severe abiotic stress and the major constraint on wheat (Triticum aestivum L.) productivity world wide. Deciphering the mechanisms of drought tolerance is a challenging task because of the complexity of drought responses, environmental factors and their interactions. The objective of this study was to evaluate the ability of the antioxidative defence system in imparting tolerance against drought‐induced oxidative stress and yield loss in two wheat genotypes, when subjected to long‐term field drought. Drought resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbate level in roots and leaves at different plant developmental stages. Drought‐tolerant genotype having higher antioxidative enzymes activities, and ascorbate level was superior to that of sensitive genotype in maintaining lower H2O2 content and lipid peroxidation and higher growth, yield and yield components under water deficit. Various antioxidative enzymes showed positive correlation with ascorbate and negative with H2O2 content. In developing grains, antioxidative defence response was nearly similar among both the genotypes under control condition; however, sensitive genotype failed to modulate the activities of antioxidative enzymes according to the ROS rush under field drought. Poor capacity of the antioxidative defence system in vegetative and reproductive tissues of sensitive genotype seems to be responsible, at least partly, for reduced yield potential under water deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.