Inulin and oligofructose belong to a class of carbohydrates known as fructans. The main sources of inulin and oligofructose that are used in the food industry are chicory and Jerusalem artichoke. Inulin and oligofructose are considered as functional food ingredients since they affect the physiological and biochemical processes in rats and human beings, resulting in better health and reduction in the risk of many diseases. Experimental studies have shown their use as bifidogenic agents, stimulating the immune system of the body, decreasing the pathogenic bacteria in the intestine, relieving constipation, decreasing the risk of osteoporosis by increasing mineral absorption, especially of calcium, reducing the risk of atherosclerosis by lowering the synthesis of triglycerides and fatty acids in the liver and decreasing their level in serum. These fructans modulate the hormonal level of insulin and glucagon, thereby regulating carbohydrate and lipid metabolism by lowering the blood glucose levels; they are also effective in lowering the blood urea and uric acid levels, thereby maintaining the nitrogen balance. Inulin and oligofructose also reduce the incidence of colon cancer. The biochemical basis of these beneficial effects of inulin and oligofructose have been discussed. Oligofructose are non cariogenic as they are not used by Streptococcus mutans to form acids and insoluble glucans that are the main culprits in dental caries. Because of the large number of health promoting functions of inulin and oligofructose, these have wide applications in various types of foods like confectionery, fruit preparations, milk desserts, yogurt and fresh cheese, baked goods, chocolate, ice cream and sauces. Inulin can also be used for the preparation of fructose syrups.
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca 2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.
During the recent decades, awareness towards the role of essential fatty acids in human health and disease prevention has been unremittingly increasing among people. Fish, fish oils and some vegetable oils are rich sources of essential fatty acids. Many studies have positively correlated essential fatty acids with reduction of cardiovascular morbidity and mortality, infant development, cancer prevention, optimal brain and vision functioning, arthritis, hypertension, diabetes mellitus and neurological/neuropsychiatric disorders. Beneficial effects may be mediated through several different mechanisms, including alteration in cell membrane composition, gene expression or eicosanoid production. However, the mechanisms whereby essential fatty acids affect gene expression are complex and involve multiple processes. Further understanding of the molecular aspects of essential fatty acids will be the key to devising novel approaches to the treatment and prevention of many diseases.
ObjectiveTo investigate whether antidrug antibodies and/or drug non‐trough levels predict the long‐term treatment response in a large cohort of patients with rheumatoid arthritis (RA) treated with adalimumab or etanercept and to identify factors influencing antidrug antibody and drug levels to optimize future treatment decisions.MethodsA total of 331 patients from an observational prospective cohort were selected (160 patients treated with adalimumab and 171 treated with etanercept). Antidrug antibody levels were measured by radioimmunoassay, and drug levels were measured by enzyme‐linked immunosorbent assay in 835 serial serum samples obtained 3, 6, and 12 months after initiation of therapy. The association between antidrug antibodies and drug non‐trough levels and the treatment response (change in the Disease Activity Score in 28 joints) was evaluated.ResultsAmong patients who completed 12 months of followup, antidrug antibodies were detected in 24.8% of those receiving adalimumab (31 of 125) and in none of those receiving etanercept. At 3 months, antidrug antibody formation and low adalimumab levels were significant predictors of no response according to the European League Against Rheumatism (EULAR) criteria at 12 months (area under the receiver operating characteristic curve 0.71 [95% confidence interval (95% CI) 0.57, 0.85]). Antidrug antibody–positive patients received lower median dosages of methotrexate compared with antidrug antibody–negative patients (15 mg/week versus 20 mg/week; P = 0.01) and had a longer disease duration (14.0 versus 7.7 years; P = 0.03). The adalimumab level was the best predictor of change in the DAS28 at 12 months, after adjustment for confounders (regression coefficient 0.060 [95% CI 0.015, 0.10], P = 0.009). Etanercept levels were associated with the EULAR response at 12 months (regression coefficient 0.088 [95% CI 0.019, 0.16], P = 0.012); however, this difference was not significant after adjustment. A body mass index of ≥30 kg/m2 and poor adherence were associated with lower drug levels.ConclusionPharmacologic testing in anti–tumor necrosis factor–treated patients is clinically useful even in the absence of trough levels. At 3 months, antidrug antibodies and low adalimumab levels are significant predictors of no response according to the EULAR criteria at 12 months.
BackgroundMiltefosine unresponsive and relapse cases of visceral leishmaniasis (VL) are increasingly being reported. However, there has been no laboratory confirmed reports of miltefosine resistance in VL. Here, we report two laboratory confirmed cases of VL from India.MethodsTwo patients with VL were referred to us with suspected VL. The first patient was a native of the VL endemic state of Bihar, but residing in Delhi, a VL non-endemic area. He was treated with broad-spectrum antibiotics and antipyretics but was unresponsive to treatment. The second patient was from Jharkhand state in eastern India (adjoining Bihar), another endemic state for VL. He was refractory to anti-leishmanial treatment, which included administration of miltefosine. Following investigation, both patients were serologically positive for VL, and blood buffy coat from both patients grew Leishmania donovani. The isolates derived from both cases were characterized for their drug susceptibility, genetically characterised, and SNPs typed for LdMT and LdROS gene expression. Both patients were successfully treated with amphotericin B.ResultsThe in vitro drug susceptibility assays carried out on both isolates showed good IC50 values to amphotericin B (0.1 ± 0.0004 μg/ml and 0.07 ± 0.0019 μg/ml). One isolate was refractory to SbIII with an IC50 of > 200 μM while the second isolate was sensitive to SbIII with an IC50 of 36.70 ± 3.2 μM. However, in both the isolates, IC50 against miltefosine was more than 10-fold higher (> 100 μM) than the standard strain DD8 (6.8 ± 0.1181 μM). Furthermore, genetic analyses demonstrated single nucleotide polymorphisms (SNPs) (354Tyr↔Phe and 1078Phe↔Tyr) in the LdMT gene of the parasites.ConclusionsHere, we document two laboratory confirmed cases of miltefosine resistant VL from India. Our finding highlights the urgent need to establish control measures to prevent the spread of these strains. We also propose that LdMT gene mutation analysis could be used as a molecular marker of miltefosine resistance in L. donovani.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-1969-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.