Irradiation of head- and neck cancer commonly results in oral dryness and discomfort for the patients due to salivary gland damage. The exact mechanisms behind the inherent radiosensitivity of salivary glands remain to be elucidated. In the present study, we used different in vitro secretory models and quantitative morphological characterization of rat parotid gland following fractionated unilateral irradiation to one gland on a 5-day fraction schedule (Monday-Friday) with 6 MV photons (total dose 30, 35, 40 and 45 Gy) or a two-fractions regimens in 5 days (Monday and Friday) with total dose of 24 and 32 Gy. The contralateral shielded gland served as control, and parallel analyses of irradiated and control glands were performed 180 days following the last irradiation treatment. The relative noradrenaline stimulated electrolyte secretion (86rubidium tracer for potassium) was decreased in the irradiated compared with control glands. The noradrenaline-stimulated exocytotic amylase release was not significantly affected by irradiation, but the gland content of amylase was decreased dose-dependently. The quantitative morphological analysis revealed a dose-dependent decline in the number of acinar cells, whereas the other parenchymal cells (intercalated, striated- and excretory duct cells) were unaffected by the irradiation compared with control glands.
SUMMARY1. Adult rats were denervated unilaterally by removal of the left superior cervical ganglion or chemically denervated with 6-hydroxydopamine or reserpine. Two weeks later the parotid glands were used for in vitro secretory studies and their catecholamines and major metabolites were measured.2. Noradrenaline concentrations were reduced 2 weeks after surgical sympathectomy and reserpine pre-treatment 18 h previously, whereas 6-hydroxydopamine pre-treatment for 3 days reduced both noradrenaline and dopamine concentrations. 3. Dopamine caused a prominent amylase release from incubated control glands. However, a subsensitivity for dopamine-induced amylase release was recorded on the denervated side.4. Dopamine caused a prominent potassium efflux measured as 86Rb+ efflux from control glands, but was without effect in denervated glands. This is in contrast to noradrenaline-induced 86Rb+ efflux which was equally effective in both denervated and control glands.5. Dopamine caused [3H]noradrenaline efflux in control glands, but was without effect in surgically denervated glands and in glands pre-treated with reserpine or 6-hydroxydopamine.6. It is concluded that dopamine-induced potassium release is caused by a presynaptic action on noradrenergic nerves, whereas dopamine-induced amylase release has a presynaptic and a postsynaptic component. The results suggest a specific action of dopamine in salivary glands, with different effects on enzyme release and ionic fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.