Group I metabotropic glutamate receptors, in particular mGluR5, have been implicated in various forms of synaptic plasticity that are believed to underlie declarative memory. We observed that mGluR5 specifically activated a channel containing TRPC1, an isoform of the canonical family of transient receptor potential (TRPC) channels highly expressed in CA1-3 regions of the hippocampus. TRPC1 is able to form tetrameric complexes with TRPC4 and/or TRPC5 isoforms. TRPC1/4/5 complexes have recently been involved in the efficiency of synaptic transmission in the hippocampus. We therefore used a mouse model devoid of TRPC1 expression to investigate the involvement of mGluR5-TRPC1 pathway in synaptic plasticity and memory formation. Trpc1-/- mice showed alterations in spatial working memory and fear conditioning. Activation of mGluR increased synaptic excitability in neurons from WT but not from Trpc1-/- mice. LTP triggered by a theta burst could not maintain over time in brain slices from Trpc1-/- mice. mGluR-induced LTD was also impaired in these mice. Finally, acute inhibition of TRPC1 by Pico145 on isolated neurons or on brain slices mimicked the genetic depletion of Trpc1 and inhibited mGluR-induced entry of cations and subsequent effects on synaptic plasticity, excluding developmental or compensatory mechanisms in Trpc1-/- mice. In summary, our results indicate that TRPC1 plays a role in synaptic plasticity and spatial working memory processes.
Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the Trpc1 gene alters the extinction of spatial reference memory. mGluR-induced long-term depression, which is partially responsible for memory extinction, was impaired in these mice. Similar results were obtained in vitro and in vivo by inhibiting the channel by its most specific inhibitor, Pico145. Among the numerous known postsynaptic pathways activated by type I mGluR, we observed that the deletion of Trpc1 impaired the activation of ERK1/2 and the subsequent expression of Arc, an immediate early gene that plays a key role in AMPA receptors endocytosis and subsequent long-term depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.