Many studies have reported that bleomycin, anti-cancer drug, induces pulmonary fibrosis as a side effect. However, few investigations have focused on the dose-response effects of bleomycin on pulmonary fibrosis. Therefore, in the present study, we investigated the effects of different doses of bleomycin in male mice. ICR mice were given 3 consecutive doses of bleomycin: 1, 2, or 4 mg/kg in bleomycin-treated (BT) groups and saline only in vehicle control (VC) groups. The animals were sacrificed at 7 and 24 days postinstillation. The severity of pulmonary fibrosis was evaluated according to inflammatory cell count and lactate dehydrogenase (LDH) activity in the broncho alveolar lavage fluid (BALF) , and lung tissues were histologically evaluated after hematoxylin and eosin (H&E) , and Masson’s trichrome staining. BT groups exhibited changed cellular profiles in BAL fluid compared to the VC group, which had an increased number of total cells, neutrophils, and lymphocytes and a modest increase in the number of macrophages at 7 days post-bleomycin instillation. Moreover, BT groups showed a dose-dependent increase in LDH levels and inflammatory cell counts. However, at 24 days after treatment, collagen deposition, interstitial thickening, and granulomatous lesions were observed in the alveolar spaces in addition to a decrease in inflammatory cells. These results indicate that pulmonary fibrosis induced by 4 mg/kg bleomycin was more severe than that induced by 1 or 2 mg/kg. These data will be utilized in experimental animal models and as basic data to evaluate therapeutic candidates through non-invasive monitoring using the pulmonary fibrosis mouse model established in this study.
In recent decades, titanium dioxide (TiO2) nanoparticles have been used in various applications, including paints, coatings, and food. However, data are lacking on the toxicological aspects associated with their use. The aim of this study was to assess the inhalation toxicity of TiO2 nanoparticles in rats by using inhalation exposure. Male Wistar rats were exposed to TiO2 nanoparticles for 2 weeks (6 hr/day, 5 days/week) at a mean mass concentration of 11.39 ± 0.31 mg/m3. We performed time-course necropsies at 1, 7, and 15 days after exposure. Lung inflammation and injury were assessed on the basis of the total and individual cell counts in bronchoalveolar lavage fluid (BALF), and by biochemical assays, including an assay for lactate dehydrogenase (LDH). Furthermore, histopathological examination was performed to investigate the lungs and nasal cavity of rats. There were no statistically significant changes in the number of BALF cells, results of biochemical assays of BALF and serum, and results of cytokine analysis. However, we did observe histopathological changes in the nasal cavity tissue. Lesions were observed at post-exposure days 1 and 7, which resolved at post-exposure day 15. We also calculated the actual amounts of TiO2 nanoparticles inhaled by the rats. The results showed that the degree of toxicity induced by TiO2 nanoparticles correlated with the delivered quantities. In particular, exposure to small particles with a size of approximately 20 nm resulted in toxicity, even if the total particle number was relatively low.
Bronchoalveolar lavage (BAL) is a useful tool in researches and in clinical medicine of lung diseases because the BAL fluid contains biochemical and cytological indicators of the cellular response to infection, drugs, or toxicants. However, the variability among laboratories regarding the technique and the processing of the BAL material limits clinical research. The aim of this study was to determine the suction frequency and lavage fraction number necessary to reduce the variability in lavage using male Sprague-Dawley rats. We compared the total cell number and protein level of each lavage fraction and concluded that more cells and protein can be obtained by repetitive lavage with a suction frequency of 2 or 3 than by lavage with a single suction. On the basis of total cell recovery, approximately 70% of cells were obtained from fractions 1~3. The first lavage fraction should be used for evaluation of protein concentration because fractions 2~5 of lavage fluid were diluted in manifolds. These observations were confirmed in bleomycin-induced inflamed lungs of rats. We further compared the BAL data from the whole lobes with data from the right lobes and concluded that BAL data of the right lobes represented data of the whole lobes. However, this conclusion can only be applied to general lung diseases. At the end, this study provides an insight into the technical or analytical problems of lavage study in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.