Genes essential for gametophyte development and fertilization have been identified and studied in detail; however, genes that fine-tune these processes are largely unknown. Here, we characterized an unknown Arabidopsis gene, GTP-BINDING PROTEIN RELATED1 (GPR1). GPR1 is specifically expressed in ovule, pollen, and pollen tube. Enhanced green fluorescent protein-tagged GPR1 localizes to both nucleus and cytoplasm, and it also presents in punctate and ring-like structures. gpr1 mutants exhibit no defect in gametogenesis and seed setting, except that their pollen grains are pale in color. Scanning electron microscopy analyses revealed a normal patterned but thinner exine on gpr1 pollen surface. This may explain why gpr1 pollen grains are pale. We next examined whether GPR1 mutation affects post gametogenesis processes including pollen germination, pollen tube growth, and ovule senescence. We found that gpr1 pollen grains germinated earlier, and their pollen tubes elongated faster. Emasculation assay revealed that unfertilized gpr1 pistil expressed the senescence marker PBFN1:GUS (GUS: a reporter gene that encodes β-glucuronidase) one-day earlier than the wild type pistil. Consistently, ovules and pollen grains of gpr1 mutants showed lower viability than those of the wild type at 4 to 5 days post anthesis. Together, these data suggest that GPR1 functions as a negative regulator of pollen germination, pollen tube growth, and gametophyte senescence to fine-tune the fertilization process.
Stomatal closure, driven by shrinking guard cells in response to the accumulation of abscisic acid (ABA) under drought stress, has a great impact on plant growth and environmental acclimation. However, the molecular regulatory mechanism underlying the turgor alteration of guard cells remains elusive, especially in cereal grasses. Here, we develop a modified enzyme digestion-based approach for the isolation of wheat (Triticum aestivum L.) guard cells. With this approach, we can remove mesophyll, pavement cells and subsidiary cells successively from the epidermis of the trichomeless coleoptile in wheat and preserve guard cells on the cuticle layers in an intact and physiologically active conditions. Using a robust single-cell-type RNA sequencing analysis, we discovered 9829 differentially expressed genes (DEGs) as significantly up- or down-regulated in guard cells in response to ABA treatment. Transcriptome analysis revealed a large percent of DEGs encoding multiple phytohormone signalling pathways, transporters, calcium signalling components, protein kinases and other ABA signalling-related proteins, which are primarily involved in key signalling pathways in ABA-regulated stomatal control and stress response. Our findings provide valuable resource for investigating the transcriptional regulatory mechanism underlying wheat guard cells in response to ABA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.