A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI) techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.
Polymeric dielectrics having different ratios of hydroxyl groups were intentionally synthesized to investigate the effect of hydroxyl groups on the electrical properties of pentacene-based organic thin film transistors (OTFTs). Large hysteresis usually observed in OTFT devices was confirmed to be strongly related to the hydroxyl bonds existing inside of polymeric dielectrics and could be reduced by substituting with cinnamoyl groups. Although the hydroxyl groups deteriorate the capacitance-voltage characteristics and gate leakage current densities, exceptionally high hole mobility (5.5cm2V−1s−1) could be obtained by increasing the number of hydroxyl groups, which was not caused by the improvement of pentacene crystallinity but related to the interface characteristics.
We investigated the impact of photon irradiation on the stability of gallium-indium-zinc oxide (GIZO) thin film transistors. The application of light on the negative bias temperature stress (NBTS) accelerated the negative displacement of the threshold voltage (Vth). This phenomenon can be attributed to the trapping of the photon-induced carriers into the gate dielectric/channel interface or the gate dielectric bulk. Interestingly, the negative Vth shift under photon-enhanced NBTS condition worsened in relatively humid environments. It is suggested that moisture is a significant parameter that induces the degradation of bias-stressed GIZO transistors.
Exposing children to environmental pollutants during important times of physiological development can lead to long-lasting health problems, dysfunction, and disease. The location of children's schools can increase their exposure. We examined the extent of air pollution from industrial sources around public schools in Michigan to find out whether air pollution jeopardizes children's health and academic success. We found that schools located in areas with the highest air pollution levels had the lowest attendance rates-a potential indicator of poor health-and the highest proportions of students who failed to meet state educational testing standards. Michigan and many other states currently do not require officials considering a site for a new school to analyze its environmental quality. Our results show that such requirements are needed. For schools already in existence, we recommend that their environmental quality should be investigated and improved if necessary.
Multiscale reactive molecular dynamics simulations are used to study proton transport through the central region of ClC-ec1, a widely studied ClC transporter that enables the stoichiometric exchange of 2 Cl(-) ions for 1 proton (H(+)). It has long been known that both Cl(-) and proton transport occur through partially congruent pathways, and that their exchange is strictly coupled. However, the nature of this coupling and the mechanism of antiporting remain topics of debate. Here multiscale simulations have been used to characterize proton transport between E203 (Glu(in)) and E148 (Glu(ex)), the internal and external intermediate proton binding sites, respectively. Free energy profiles are presented, explicitly accounting for the binding of Cl(-) along the central pathway, the dynamically coupled hydration changes of the central region, and conformational changes of Glu(in) and Glu(ex). We find that proton transport between Glu(in) and Glu(ex) is possible in both the presence and absence of Cl(-) in the central binding site, although it is facilitated by the anion presence. These results support the notion that the requisite coupling between Cl(-) and proton transport occurs elsewhere (e.g., during proton uptake or release). In addition, proton transport is explored in the E203K mutant, which maintains proton permeation despite the substitution of a basic residue for Glu(in). This collection of calculations provides for the first time, to our knowledge, a detailed picture of the proton transport mechanism in the central region of ClC-ec1 at a molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.