Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.
Acid whey presents a major disposal issue for the dairy industry due to its high lactic acid and mineral concentration. In this work, the feasibility of using membrane technology to treat acid whey to produce high quality whey powder was demonstrated at pilot scale. Three process combinations were tested, namely (1) ultrafiltration and electrodialysis, (2) ultrafiltration, nanofiltration and electrodialysis, and (3) ultrafiltration, dia-nanofiltration and electrodialysis.All three combinations were successful in reducing the levels of lactic acid and minerals in acid whey. However, the lowest ratio between lactic acid and lactose (0.017 g lactic acid/ g of lactose) was obtained with the process utilizing dia-nanofiltration. The energy required for electrodialysis of ultrafiltration permeate and dia-nanofiltration retentate was comparable (7.5 and 7.8 kWh/ tonne of feed, respectively). However, the dia-nanofiltration retentate was at least 3.5 times more concentrated than the ultrafiltration permeate, thus reducing the annual energy consumption and capital investment of the electrodialysis unit. The product of the nanofiltration and electrodialysis process was successfully dried to produce a powder with an ash and moisture content of 4% and 2.5%, respectively.
Saline wastewater is a by-product of cheese manufacturing and whey processing that can have serious environmental and economic consequences. Salty streams originating from dairy processing operations include chromatography wastes, clean-in-place wastewater, acid whey, salty whey and waste generated from whey demineralization processes such as nanofiltration, electrodialysis and ion exchange. With the participation of the major dairy companies in Australia, an industry wide survey was conducted to acquire a comprehensive understanding of the management strategies for these salty waste streams. High salinity waste streams are commonly directed to evaporation ponds. However, environmental impacts from land degradation, odour and dust have prevented the construction of further evaporation ponds in some areas of Australia. The survey results also show that disposal to municipal trade waste is not always effective, as the current levels of some salinity-related parameters are significantly higher than the levels allowed by the local water/environmental authorities. For high salinity streams, salt removal can lead to more substantial savings in trade waste charges compared to wastewater volume reduction. Thus, salt removal and recovery from salty waste streams has become a major focus of the sustainability agenda of the Australian dairy industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.