The frontal eye fields (FEFs) and the anterior cingulate cortex (ACC) are commonly coactivated for cognitive saccade tasks, but whether this joined activation indexes coordinated activity underlying successful guidance of sensorimotor mapping is unknown. Here we test whether ACC and FEF circuits coordinate through phase synchronization of local field potential and neural spiking activity in macaque monkeys performing memory-guided and pro- and anti-saccades. We find that FEF and ACC showed prominent synchronization at a 3–9 Hz theta and a 12–30 Hz beta frequency band during the delay and preparation periods with a strong Granger-causal influence from ACC to FEF. The strength of theta- and beta-band coherence between ACC and FEF but not variations in power predict correct task performance. Taken together, the results support a role of ACC in cognitive control of frontoparietal networks and suggest that narrow-band theta and to some extent beta rhythmic activity indexes the coordination of relevant information during periods of enhanced control demands.
It has been previously shown that small- and large-amplitude saccades have different functions during vision in natural environments. Large saccades are associated with reaching movements toward objects, whereas small saccades facilitate the identification of more detailed object features necessary for successful grasping and manual manipulation. To determine whether these represent dichotomous processing streams, we used resting-state functional MRI to examine the functional connectivity patterns of the medial and lateral frontal eye field (FEF) regions that encode large- and small-amplitude saccades, respectively. We found that the spontaneous blood oxygen level-dependent signals of the medial FEF were functionally correlated with areas known to be involved in reaching movements and executive control processes, whereas lateral FEF was functionally correlated with cortical areas involved in object processing and in grasping, fixation, and manipulation of objects. The results provide strong evidence for two distinct visuomotor network systems in the primate brain that likely reflect the alternating phases of vision for action in natural environments.
doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.