Star-shaped charge-transporting materials with a triphenylamine (TPA) core and various phenylethenyl side arm(s) were obtained in a one-step synthetic procedure from commercially available and relatively inexpensive starting materials. Crystallinity, glass-transition temperature, size of the π-conjugated system, energy levels, and the way molecules pack in the solid state can be significantly influenced by variation of the structure of these side arm(s). An increase in the number of phenylethenyl side arms was found to hinder intramolecular motions of the TPA core, and thereby provide significant enhancement of the fluorescence quantum yield of the TPA derivatives in solution. On the other hand, a larger number of side arms facilitated exciton migration through the dense side-arm network formed in the solid state and, thus, considerably reduces fluorescence efficiency by migration-assisted nonradiative relaxation. This dense network enables charges to move more rapidly through the hole-transport material layer, which results in very good charge drift mobility (μ up to 0.017 cm(2) V (-1) s(-1)).
The temperature-dependence of the electrical and dielectric properties of paper substrates was studied using experimental papers with different NaCl contents, different thicknesses, and different grammages. Physical processes related to the charging potential, charge decay rate, conductivity, dielectric constant, and dielectric loss of papers are dependent on thermal energy, and this dependence on temperature can be described by exponential expressions. The ion content of paper not only determines the level of these properties at a given temperature, as expected but also influences their temperature-dependence. Frequency analysis of the dielectric loss confirms that new structures are formed in paper by the addition of NaCl. The results may be applicable to the design of materials and equipment, e.g., for the electrophotographic printing processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.