Fluorescence lifetimes of nitrogen-vacancy color centers in individual diamond nanocrystals were measured at the interface between a glass substrate and a strongly scattering medium. Comparison of the results with values recorded from the same nanocrystals at the glass-air interface revealed fluctuations of fluorescence lifetimes in the scattering medium. After discussing a range of possible systematic effects, we attribute the observed lengthening of the lifetimes to the reduction of the local density of states. Our approach is very promising for exploring the strong threedimensional localization of light directly on the microscopic scale.
The authors report on the fabrication of photonic crystals in the InP∕InGaAsP∕InP material system for applications at telecommunication wavelengths. To achieve low optical loss, the photonic crystal holes must demonstrate smooth sidewalls and should be simultaneously deep and cylindrical. The authors present the etching process of these structures based on a Cl2∕Ar∕N2 chemistry with an inductively coupled plasma reactive-ion etching system. A systematic analysis is provided on the dependency of the hole sidewall roughness, depth, and shape on the process parameters such as etching power, pressure, and chemical composition of the plasma. They found that a low plasma excitation power and a low physical etching are beneficial for achieving deep holes, whereas for the nitrogen content in the plasma, a delicate balance needs to be found. Nitrogen has a negative impact on the hole shape and surface roughness but is capable of preventing underetching below the mask by passivation of the sidewalls. With the authors’ process more than 4μm deep holes with low conicity have been demonstrated.
Ultrafast time-resolved reflectivity investigations are performed on InP-based photonic
crystals with a wide range of structural parameters. It is found that the structure plays a
critical role in determining the recombination dynamics of the photo-injected charge
carriers. For sufficiently large etched sidewall area densities the carrier lifetime is decreased
to a level below 100 ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.