This study aimed to formulate citicoline-loaded chitosan-coated liposomes (CT-CS-LPs) for topical administration and evaluated for wound healing in a diabetic animal model. Methods: CT-LPs were formulated via a thin-film hydration approach and coated with chitosan (CS). Box-Behnken statistical design investigated the effects of lipid amount, chitosan concentration, and cholesterol amount on vesicle diameter, surface charge, and entrapment efficiency. The potential of the optimized CT-CS-LPs gel for wound healing was further evaluated in streptozocin-induced diabetic rats. The different healing stages were evaluated by several techniques, including general and special staining techniques, in addition to antibody immunohistochemistry.
Results:The optimized CT-CS-LPs obtained had a mean size of 211.6 nm, a 50.7% entrapment efficiency, and a positive surface charge of 32.1 mV. In addition, the optimized CT-CS-LPs exhibited in vitro sustained release behavior. The in vivo experiments revealed that treatment with the optimized CT-CS-LPs boosts the healing process of the skin wound in diabetic rats by reducing inflammation, accelerating re-epithelization, angiogenesis, fibroblast proliferation, and connective tissue remodeling, leading to rapid wound closure. Conclusion: Chitosan-coated liposomes containing citicoline have emerged as a potential approach for promoting the healing process in diabetic rats. However, the therapeutic effectiveness of the suggested approach in diabetic patients needs to be investigated.
The aim of this research is to formulate a lecithin–chitosan based nanoparticulate system loaded with berberine (BER-LC-CTS-NPs) that could be integrated into a topically applied formulation and assessed for healing wounds in a diabetic animal model. In order to formulate BER-LC-CTS-NPs, soybean lecithin, isopropyl myristate, and berberine dispersed in ethanolic solution were added into an aqueous solution of chitosan dropwise with sonication. We assessed the influence of lecithin amount, chitosan amount, and isopropyl myristate concentration on particle diameter, zeta potential, and entrapment and employed a Box–Behnken statistical design. The resulting optimized BER-LC-CTS-NPs had a mean size of 168.4 nm, a surface charge of 33.1 mV, and entrapment of 82.3%. The optimized BER-LC-CTS-NPs showed a sustained in vitro release profile. Furthermore, the potential of the optimized BER-LC-CTS-NPs integrated into a topical gel formulation for wound healing in streptozocin-induced diabetic rats was assessed. Our findings show that combining chitosan and berberine in the nanoparticles produces a synergistic effect when it comes to wound healing. The optimized nanoparticulate system works by reducing inflammation, inducing blood vessels and fibroblast proliferation, and promoting mature collagen fibers deposition. Based on the experimental results, lecithin–chitosan nanoparticles loaded with berberine have evolved as a promising strategy for accelerating wound the healing process in diabetic patients. However, the clinical merits of the developed system need to be investigated in diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.