This article explains the development of a prototype of a portable and a very low-cost electronic nose based on an mbed microcontroller. Mbeds are a series of ARM microcontroller development boards designed for fast, flexible and rapid prototyping. The electronic nose is comprised of an mbed, an LCD display, two small pumps, two electro-valves and a sensor chamber with four TGS Figaro gas sensors. The performance of the electronic nose has been tested by measuring the ethanol content of wine synthetic matrices and special attention has been paid to the reproducibility and repeatability of the measurements taken on different days. Results show that the electronic nose with a neural network classifier is able to discriminate wine samples with 10, 12 and 14% V/V alcohol content with a classification error of less than 1%.
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specifically, we perform large-scale Monte Carlo simulations of a triangulated two-dimensional phantom network which is freely fluctuating in threedimensional space. We obtain a continuous crumpling transition characterized by critical exponents which we estimate accurately through the use of finite-size techniques. By controlling the scaling corrections, we additionally compute with high accuracy the asymptotic value of the Poisson ratio in the flat phase, thus characterizing the auxetic properties of this class of systems. We obtain agreement with the value which is universally expected for polymerized membranes with a fixed connectivity.
Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.
The determination of daily concentrations of atmospheric pollen is important in the medical and biological fields. Obtaining pollen concentrations is a complex and time-consuming task for specialized personnel. The automatic location of pollen grains is a handicap due to the high complexity of the images to be processed, with polymorphic and clumped pollen grains, dust, or debris. The purpose of this study is to analyze the feasibility of implementing a reliable pollen grain detection system based on a convolutional neural network architecture, which will be used later as a critical part of an automated pollen concentration estimation system. We used a training set of 251 videos to train our system. As the videos record the process of focusing the samples, this system makes use of the 3D information presented by several focal planes. Besides, a separate set of 135 videos (containing 1234 pollen grains of 11 pollen types) was used to evaluate detection performance. The results are promising in detection (98.54% of recall and 99.75% of precision) and location accuracy (0.89 IoU as the average value). These results suggest that this technique can provide a reliable basis for the development of an automated pollen counting system.
In this work, we present a complete hardware development and current consumption study of a portable electronic nose designed for the Internet-of-Things (IoT). Thanks to the technique of measuring in the initial action period, it can be reliably powered with a moderate-sized battery. The system is built around the well-known SoC (System on Chip) ESP8266EX, using low-cost electronics and standard sensors from Figaro’s TGS26xx series. This SoC, in addition to a powerful microcontroller, provides Wi-Fi connectivity, making it very suitable for IoT applications. The system also includes a precision analog-to-digital converter for the measurements and a charging module for the lithium battery. During its operation, the designed software takes measurements periodically, and keeps the microcontroller in deep-sleep state most of the time, storing several measurements before uploading them to the cloud. In the experiments and tests carried out, we have focused our work on the measurement and optimization of current consumption, with the aim of extending the battery life. The results show that taking measurements every 4 min and uploading data every five measurements, the battery of 750 mAh needs to be charged approximately once a month. Despite the fact that we have used a specific model of gas sensor, this methodology is quite generic and could be extended to other sensors with lower consumption, increasing very significantly the duration of the battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.